Edinburgh Research Explorer

Dr Jo Stevens

Career Track Fellow/Research Fellow

Profile photo

Willingness to take Ph.D. students: Yes

Education / Academic qualification

1999Doctor of Philosophy (PhD), University of Reading
Assembly of Influenza Viruses
1996Bachelor of Science, University of Reading

Current Research Interests

Studies intracellular bacterial pathogens, with specific interest in the bacterial genes required for intracellular survival and evasion of innate immune responses.

Research Interests

The melioidosis pathogen Burkholderia pseudomallei is a facultative intracellular pathogen of humans and animals that enters non-phagocytic cells, escapes from endosomes and propels itself within and between cells by continuous polymerisation of actin at one bacterial pole (known as actin based motility). Actin-based motility is also a feature of infection by the closely related glanders pathogen B. mallei and the avirulent saprophyte B. thailandensis.

With previous BBSRC support, I have unravelled how B. pseudomallei stimulates actin assembly to propel itself within and between eukaryotic cells. I characterised a factor required for intracellular actin-based motility (BimA), surveyed its diversity in natural populations and identified functional orthologues in other Burkholderia species . BimA is required for intracellular survival, intercellular spread and virulence and acts in a manner distinct from most other pathogen-associated factors required for actin-based motility. Moreover, I recently found that BimA from closely-related Burkholderia species use distinct strategies to nucleate actin. B. thailandensis BimA recruits and activates a cellular complex that assembles actin (Arp2/3) via a unique central acidic domain, whereas B. pseudomallei BimA exhibits an intrinsic Arp2/3-independent ability to nucleate actin in a manner akin to eukaryotic formin- and spire-family proteins.

My ongoing research is aimed at further understanding the mechanisms by which BimA proteins from related Burkholderia species function as actin nucleators. Towards this aim I am trying to understand how posttranslational modifications of the proteins affect function as well as define any differences in the host cell proteins they may interact with. I am also investigating the role of BimA and actin-based motility in the evasion of intracellular recognition and killing mechanisms in host cells.

 

Qualifications

BSc. (Hons) Microbiology, Class 2(I), University of Reading, 1996.

PhD Molecular Virology, Thesis Title: Assembly of Influenza Viruses, University of Reading, 2000.

ID: 20413