Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone

Omar ME Albagha¹, Sachin Wani¹, Micaela R Visconti¹, Nerea Alonso¹, Kirsteen Goodman², Maria Luisa Brandi³, Tim Cundy⁴, Pui Yan Jenny Chung⁵, Rosemary Dargie⁶, Jean-Pierre Devogelaer⁷, Alberto Falchetti³, William D Fraser⁸, Luigi Gennari⁹, Fernando Gianfrancesco¹⁰, Michael J Hooper¹¹, Wim Van Hul⁵, Gianluca Isaia¹², Geoff C Nicholson¹³, Ranuccio Nuti⁹, Socrates Papapoulos¹⁴, Javier del Pino Montes¹⁵, Thomas Ratajczak¹⁶, Sarah L Rea¹⁶, Domenico Rendina¹⁷, Rogelio Gonzalez-Sarmiento¹⁵, Marco di Stefano¹², Lynley C Ward¹⁶, John P Walsh¹⁶, & Stuart H Ralston¹² for the Genetic Determinants of Paget’s Disease (GDPD) Consortium

¹Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK; ²Edinburgh Clinical Trials Unit, University of Edinburgh, Western General Hospital, Edinburgh UK; ³Department of Internal Medicine, University of Florence, Florence, Italy; ⁴Department of Medicine, University of Auckland, Auckland, New Zealand; ⁵Department of Medical Genetics, University of Antwerp, Antwerp, Belgium; ⁶University Department of Medicine, Glasgow Royal Infirmary, Glasgow, UK; ⁷Department of Rheumatology, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium; ⁸Department of Clinical Chemistry, Royal Liverpool University Hospital, Liverpool, UK; ⁹Department of Internal Medicine, Endocrine Metabolic Sciences and Biochemistry, University of Siena, Siena, Italy; ¹⁰Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, Italian National Research Council, Naples, Italy; ¹¹Department of Medicine, University of Sydney, Sydney, Australia; ¹²Medical and Surgical Department, Geriatric Section, University of Torino, Torino, Italy; ¹³Department of Clinical and Biomedical Sciences, Barwon Health, Geelong Hospital, University of Melbourne, Melbourne, Australia; ¹⁴Department of Endocrinology & Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands; ¹⁵Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Servicio de Reumatología, Hospital Universitario de Salamanca, RETICEF, Salamanca, Spain; ¹⁶Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, and School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia; ¹⁷Department of Clinical and Experimental Medicine Federico II University of Naples, Naples, Italy.
Correspondence to: Dr Omar M E Albagha, PhD (omar.albagha@ed.ac.uk) or Professor Stuart H Ralston MD, (stuart.ralston@ed.ac.uk) Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK Phone: +44-131-651-1022; Fax: +44+44-131-651-1085.
Paget’s disease of bone (PDB) is a common disorder characterised by focal abnormalities of bone remodelling. We previously identified variants at the CSF1, OPTN and TNFRSF11A loci as risk factors for PDB by genome wide association study. Here, we extended this study, identified three new loci and confirmed their association with PDB in 2,215 cases and 4,370 controls from seven independent populations. The new associations were with rs5742915 within PML on 15q24 (OR=1.34; \(P = 1.6 \times 10^{-14}\)); rs10498635 within RIN3 on 14q32 (OR= 1.44; \(P = 2.55 \times 10^{-11}\)) and rs4294134 within NUP205 on 7q33 (OR=1.45; \(P= 8.45 \times 10^{-10}\)). Our data also confirmed the association of TM7SF4 (rs2458413; OR=1.40; \(P= 7.38 \times 10^{-17}\)) with PDB. The seven loci explained a substantial proportion of familial risk of PDB (~13%). These studies provide new insights into the genetic architecture and pathophysiology of PDB.
A total of 27 SNPs were genotyped in the replication cohorts which consisted of 1,474\textit{SQSTM1}-negative PDB cases from six different geographic regions and 1,671 unaffected controls from the same regions that were matched with the cases by gender as described in the online methods section and Supplementary Table 1. A meta-analysis of data from the GWAS stage and individual replication cohorts was performed and the results are summarised in Supplementary Table 2. This strengthened the association with PDB for the \textit{CSF1}, \textit{OPTN}, and \textit{TNFRSF11A} loci which were identified in our previous study\(^1\) and confirmed the association with 8q22.3 locus which was suggestively associated with PDB in our previous GWAS\(^1\) and was confirmed to be associated with PDB in a small study of Belgian and Dutch subjects\(^8\). Furthermore, three additional genome wide significant loci on 7q33, 14q32.12, and 15q24.1 were identified in the combined data set \((P < 5 \times 10^{-8}; \text{Table 1 and Fig. 2})\).

The strongest signal on 8q22.3 was with rs2458413 \((\text{combined } P\text{-value} = 7.38 \times 10^{-17}; \text{OR} = 1.4)\). There was no significant heterogeneity between the study groups (Table 1, Fig. 3 and Supplementary Table 3) and the direction of association was similar in all cohorts. The associated region spans \(\sim 220\text{kb} \) but SNPs with the highest association signal appear to cluster within an 18-kb LD block spanning the entire Transmembrane 7 superfamily member 4 gene (\textit{TM7SF4}; Fig. 2 and Supplementary Fig. 1). This gene encodes dendritic cell-specific transmembrane protein (DC-STAMP)\(^9\) which is a strong functional candidate gene for PDB since it is required for the fusion of osteoclast precursors to form mature osteoclasts\(^10\).

Previous studies have shown that RANKL induced DC-STAMP expression is essential for osteoclast formation\(^11\) and a recent study showed that the connective tissue growth factor CCN2 stimulates osteoclast fusion through interaction with DC-STAMP\(^12\). Since osteoclasts from patients with PDB are larger in size and contain more nuclei than normal osteoclasts, it seems likely that the genetic variants that predispose to PDB do so by enhancing \textit{TM7SF4} expression or by causing gain-of-function at the protein level but further studies will be required to investigate these possibilities.

The first new locus for PDB susceptibility was on 7q33 tagged by rs4294134 \((\text{combined } P\text{-value} = 8.45 \times 10^{-10}; \text{OR} = 1.45)\). The direction of association was similar in all study cohorts and analysis of the combined data set showed no evidence for heterogeneity between study groups (Table 1, Fig. 3 and Supplementary Table 3). The associated region spans \(\sim 350\text{kb} \) (Fig. 2) but the strongest signal was with rs4294134, located within the 22nd intron of \textit{NUP205}. This gene encodes nucleoporin 205kDa which is one of the main components of the nuclear pore complex involved in the regulation of transport between the cytoplasm and nucleus\(^13\). All SNPs with \(P < 1 \times 10^{-5}\) in the 350kb associated region were in moderate to strong LD with rs4294134 \((r^2 \geq 0.5; D' \geq 0.95)\) with the exception of two SNPs (rs3110788...
and rs3110794) which were poorly correlated with rs4294134 ($r^2 \leq 0.21$; $D' \geq 0.95$; Fig. 2). Conditional analysis in the GWAS stage indicated that the association signal appeared to be driven by rs4294134 ($P = 8.8 \times 10^{-3}$) after adjusting for rs3110788 ($P = 0.31$) and rs3110794 ($P = 0.10$). None of the genes located in this region are known to affect bone metabolism and further studies will be required to identify the functional variant(s) responsible for association with PDB.

The second new susceptibility locus was located on 14q32.12 and was tagged by rs10498635. This SNP showed borderline evidence of association with PDB in our previous study ($P = 9.69 \times 10^{-8}$) but reached genome-wide significance in the present study (combined P-value $= 2.55 \times 10^{-11}$; OR $= 1.44$). Association testing showed no evidence for heterogeneity between the study groups (Table 1, Fig. 3 and Supplementary Table 3). The 62kb-associated region is bounded by two recombination hotspots and contains the gene RIN3 (Fig. 2) that encodes the Ras and Rab interactor 3, a protein that plays a role in vesicular trafficking through interaction with small GTPases such as Ras and Rab14,15. The function of RIN3 in bone metabolism is currently unknown, but it could play a role in bone resorption in view of the importance that small GTPases play in vesicular trafficking and in osteoclast function16,17. It is of interest to note that mutations affecting the VCP, a protein also involved in vesicular trafficking, cause the syndrome of inclusion body myopathy with early-onset Paget’s disease and frontotemporal dementia (IBMPFD)18.

The third new susceptibility locus was located on 15q24.1 and the strongest association was with rs5742915 (combined P-value $= 1.60 \times 10^{-14}$; OR $= 1.34$; Table 1, Fig. 3 and Supplementary Table 3). The associated region is bounded by two recombination hot spots and spans ~200kb but a gap spanning ~40kb was observed in this region with no SNP coverage in the illumina arrays or the HapMap CEU population. The associated SNPs were clustered within the promyelocytic leukaemia gene (PML; Fig. 2) and the strongest signal was observed for rs5742915, which results in a phenylalanine to leucine amino acid change at codon 645 (F645L) of the PML protein. The function of PML in bone metabolism is unclear but it is known to be involved in TGF-β signalling19. Accordingly Lin et al showed that cells from pml knock out mice were resistant to TGF-β-dependent growth arrest and apoptosis and had impaired induction of TGF-β target genes19. Since TGF-β is known to play a role in the regulation of bone remodelling, it is possible that the association between PDB and PML could be mediated by an effect on TGF-β signalling, but further research will be required to investigate this possibility. The GOLGA6A gene is also located in the associated region and encodes a protein that belongs to golgin, a family of coiled-coil proteins associated with the Golgi apparatus and play a role in membrane fusion and as structural supports for the Golgi
cisternae. This gene is located in the 40kb gap region that contains a large low-copy repeat sequence. Although the GOLGA6A has no known role in bone metabolism, mutations in other members of the golgin family have been shown to cause a lethal skeletal dysplasia\(^{20}\), and a severe form of osteoporosis\(^{21}\).

We were also able to replicate our previously reported association between variants at the CSF1, OPTN, and TNFRSF11A loci and PDB in the present study\(^1\). The results of meta-analysis of the combined data set for these loci are shown in Table 1 and Supplementary Fig. 2 which provide conclusive evidence for association of variants at CSF1 \((P = 7.06 \times 10^{-35})\), OPTN \((P = 4.37 \times 10^{-38})\), and TNFRSF11A \((P = 7.98 \times 10^{-21})\) with PDB. Evidence of heterogeneity between study groups was observed for rs1561570 \((I^2 = 65.7\%; P_{het} = 0.01)\) at OPTN but this was due to differences in effect size rather than the direction of effect and the association remained genome wide significant after accounting for heterogeneity \((P = 4.34 \times 10^{-12}; OR = 1.68)\). The heterogeneity was caused by larger effect size observed in the Dutch cohort (Supplementary Fig. 2) possibly due to the small sample size of this cohort. These observations provide highly robust evidence for association between these loci and PDB and extend those recently reported\(^8\) in the Dutch and Belgian populations which were also included in the present study.

We next wanted to determine if the identified loci on 15q24.1, 7q33 and 14q32.12 interacted with each other or with the previously identified loci on 1p13.3, 8q22.3, 10p13 and 18q21.33 to affect the risk of PDB. Pair-wise interaction analysis showed weak evidence for interaction between 7q33 (rs4294134) with 8q22.3 (rs2458413; \(P = 0.03\)) and 10p13 (rs1561570; \(P = 0.02\)). However, these interactions were not significant after adjusting for multiple testing and none of the other loci showed evidence for interaction \((P > 0.05)\) suggesting a multiplicative model of association with PDB risk. In order to estimate the effect size of the identified loci on the development of PDB, we calculated the proportion of familial risk explained by the genome wide significant loci in the replication sample assuming a sibling relative risk for PDB of 7.0\(^{22}\). This showed that the proportion of familial risk explained was ~13% which is much greater than observed for other bone diseases like osteoporosis\(^{23}\). We also estimated the cumulative population attributable risk of these loci in the replication cohort and found it to be 86% and we found that the risk of PDB increased with increasing number of risk allele scores defined by the seven loci \((OR_{per-riskallele} = 1.44, 95\% \text{ CI} = 1.38 – 1.51, P = 5.4 \times 10^{-57})\). When allele scores were weighted according to their estimated effect size we found that subjects in the top 10% of the allele score distribution \((D10; n = 315)\) had 10.1 fold \((95\% \text{ CI}; 7.0 – 14.6; P = 2.4 \times 10^{-39})\) increase in risk of developing PDB compared to those in the bottom 10% of the distribution \((D1; n = 315)\) from
the replication dataset (Fig. 4). Although these data suggest that a large part of the genetic risk of PDB in patients without SQSTM1 mutations is accounted for by these loci, we acknowledge that the functional variants need to be identified before we can precisely estimate the contribution that these loci make to the risk of developing PDB. To assess the functional effect of the identified SNPs on gene expression, we tested the association between top PDB-associated SNPs (or those in LD; D’≥0.8) from each of the seven loci and cis-allelic expression of genes located in the associated regions using publicly available expression quantitative trait loci (eQTL) data. This showed highly significant associations for transcripts of TM7SF4 (rs2458415; expression P-value = 1.22 x 10^{-18}) and OPTN (rs1561570; expression P-value = 6.61 x 10^{-62}) in peripheral blood monocytes suggesting that the association with PDB risk for these loci could be mediated by influencing gene expression levels.

In addition to the loci mentioned above, additional variants were identified that showed suggestive evidence for association with PDB. For example a locus on chromosome Xq24 showed borderline evidence for association with PDB (rs5910578 within SLC25A43 gene; combined P = 1.26 x 10^{-7}; OR = 1.34) as did another locus on chromosome 6p22.3 (rs1341239 near PRL gene; combined P = 3.83 x 10^{-6}; OR = 1.20; Supplementary Table 2). Given that we observed 6 genotyped variants with P < 1 x 10^{-5} in the GWAS stage after removal of confirmed SNPs and associated variants when we only expect 3 by chance (Supplementary Fig. 3), it is likely that some of the associations observed are true but our study was not sufficiently powered to detect them at a genome wide significance level (P < 5 x 10^{-8}).

This study has been successful in identifying seven loci that contribute substantially to the risk of developing PDB. The identified loci have relatively large effect sizes compared with other common diseases such as osteoporosis and rheumatoid arthritis. This indicates that susceptibility to PDB is most probably mediated by inheritance of a relatively small number of genes with large effect sizes as opposed to a large number of genes with small effect sizes as seen in other complex diseases. Many of the susceptibility variants lie within or close to genes that are known to play important roles in regulating osteoclast differentiation and function whereas other variants lie within genes not previously implicated in the regulation of bone metabolism. Whilst further work will be required to identify the functional variants, the present study has provided new insights into the genetic architecture of PDB and has identified several genes that previously were not suspected to play a role in bone metabolism. Finally, the large effect size of the variants identified means that it may be possible in the future to identify people at risk of developing PDB by genetic profiling.
ACKNOWLEDGEMENTS

The authors would like to acknowledge the contribution of the many participants who provided samples for the analysis. Dr Lee Murphy and Ms Angie Fawkes of the Wellcome Trust Clinical Research Facility for technical support with the Illumina genotyping. Mrs Aman Khatib for her assistance in data management. The study was supported in part by grants to SHR from the Arthritis Research Campaign (grants 13724, 17646 & 15389) and a grant to OMEA and SHR from the Paget’s Association. This study makes use of data generated by the Wellcome Trust Case-Control Consortium. A full list of the investigators who contributed to the generation of the data is available from www.wtccc.org.uk and funding for the project was provided by the Wellcome Trust under award 076113 and 085475. We thank other members of the GDPD consortium for sample collection and clinical phenotyping of the Italian cohorts: Silvano Adami and Maurizio Rossini, University of Verona, Vellegio Hospital, Verona, Italy; Maurizio Benucci, Rheumatology Unit, Nuovo Ospedale, Florence, Italy; Simona Bergui and Giancarlo Isaia, Department of Internal Medicine, University of Torino, Torino, Italy; Daniela Merlotti, Department of Internal Medicine, University of Siena, Siena, Italy; Ombretta Di Munno, Rheumatology Unit, University of Pisa, Pisa, Italy; Sergio Ortolani, Centre for Metabolic Bone Disease, Instituto Auxologico Italiano, Milan, Italy; Massimo Fabio Uliviera, Ospedale Maggiore, Milan, Italy; Francesca Torricelli, Unit of Genetic Diagnosis, Carregi Hospital, Florence, Italy; Giuseppe Mossetti and Antonio Del Puento, Federico II, University of Naples, Naples, Italy. For the Belgian and Dutch cohorts: Steven Boonen, Department of Experimental Medicine, Leuven University, Leuven, Belgium; Stefan Goemaere & Hans-Georg Zmierczak, Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium; Piet Geusens, Biomedical Research Unit, University of Hasselt, Diepenbeek, Belgium, & Maastricht University, The Netherlands; Marcel Karperien, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands; Jan Van Offel and Filip Vanhoenacker, University Hospital of Antwerp, Edegem, Belgium; Leon Verbruggen, Department of Rheumatology, UZ Brussels, Brussels, Belgium; René Westhovens, Department of Rheumatology, University Hospital Gasthuisberg KU Leuven, Leuven, Belgium; Elisabeth Marefise Eekhoff, Department of Endocrinology, VU University Medical Centre, Amsterdam, The Netherlands; this work was supported by grants from the ‘Fonds voor Wetenschappelijk onderzoek’ (FWO, G.0065.10N) and a network of excellence grant (EuroBoNeT) from the European Union (FP6) to W.V.H. For the Australian cohort: Bronwyn GA Stuckey, Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands WA and School of Medicine and Pharmacology, University of Western
Australia, Crawley WA, Australia; Bryan K Ward, Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands WA, Australia.

AUTHOR CONTRIBUTIONS
O.M.E.A. contributed to study design and funding, oversaw the genotyping, performed data management, quality control, statistical and bioinformatics analyses, and wrote the first draft of the manuscript. S.H.R. designed the study, obtained funding, coordinated the sample collection and phenotyping, and revised the manuscript. K.G., M.L.B., T.C., P.Y.J.C, R.D., J.-P. D., A.F., W.D.F., L.G, F.G., M.J.H., W.V.H, G.I., G.C.N., R.N., S.P., J.d.P.M., T.R., S.L.R, D.R., R.G.-S., M.d.S., L.C.W., and J.P.W. contributed toward clinical sample collection and phenotyping. M.R.V., N.A., S.W., R.G.-S., P.Y.J.C., and F.G. contributed to sample preparation and carried out DNA sequencing to identify samples with SQSTM1 mutations. All authors critically reviewed the article for important intellectual content and approved the final manuscript.

COMPETING FINANCIAL INTERESTS
O.M.E.A. and S.H.R. have filed patent applications on the use of genetic profiling to identify patients at risk of Paget’s disease. The other authors declare no competing financial interests.
FIGURE LEGENDS

Figure 1. Loci for susceptibility to PDB detected by genome wide association study. Manhattan plot of association test results of GWAS stage data showing chromosomal position of 2,487,078 genotyped or imputed SNPs plotted against genomic-control adjusted $-\log_{10} P$. The red horizontal line represents the threshold for genome wide significance ($P < 5 \times 10^{-8}$).

Figure 2. Regional association plots of loci showing genome wide significant association with PDB. Details of loci on chromosome (a) 7q33, (b) 15q24.1, (c) 8q22.3 and (d) 14q32.12 showing the chromosomal position (based on NCBI human genome build 36) of SNPs in each region plotted against $-\log_{10} P$ values. Genotyped (squares) and imputed (circles) SNPs are colour-coded according to the extent of linkage disequilibrium with the SNP showing the highest association signal (represented as purple diamonds) from each region in the combined analysis. The estimated recombination rates (cM/Mb) from HapMap CEU release 22 are shown as light blue lines and blue arrows represent known genes in each region. The associated regions were defined based on LD with the highest association signal ($r^2 > 0.2$) within a window of 500kb.

Figure 3. Forest plots of overall effect size for SNPs associated with PDB risk from the identified loci on (a) 7q33 (rs4294134), (b) 8q22.3 (rs2458413), (e) 14q32.12 (rs10498635), and (d) 15q24.1 (rs5742915). The overall effect size was estimated using meta-analysis of the GWAS sample and the six replication samples. The black squares represent the effect estimates for the individual cohorts and the horizontal lines represent the 95% confidence interval of the estimates. The sizes of the squares are proportionate to the weight of the estimate. The diamonds and triangles represent the overall estimate under fixed effect and random effects model, respectively. The dotted vertical lines represent the overall fixed effect estimates.

Figure 4. Cumulative contribution of genome-wide significant loci to the risk of PDB. Risk allele scores defined by the seven loci associated with PDB risk is plotted against the odds ratio (OR) for PDB. Risk alleles were weighted according to their estimated effect size and weighted risk allele scores were divided into ten equal parts (deciles) using data from the replication cohorts. The OR for PDB risk was calculated for each decile in reference to the fifth decile (D5). Vertical bars represent 95% confidence intervals.
Table 1. Summary of the seven loci showing genome-wide significant association with Paget’s disease of bone.

<table>
<thead>
<tr>
<th>Chr</th>
<th>SNP</th>
<th>RA</th>
<th>GWAS Stage</th>
<th>Replication</th>
<th>Combined Overall Effect</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fixed effect</td>
<td>Fixed effect</td>
<td>Heterogeneity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phet</td>
</tr>
<tr>
<td>1</td>
<td>rs10494112</td>
<td>G</td>
<td>5.83 x 10⁻¹⁷</td>
<td>1.75 (1.54 – 1.99)</td>
<td>4.93 x 10⁻¹⁰</td>
<td>1.69 (1.50 – 1.89)</td>
</tr>
<tr>
<td>7</td>
<td>rs4294134</td>
<td>G</td>
<td>1.20 x 10⁻⁵⁶</td>
<td>1.50 (1.25 – 1.79)</td>
<td>2.29 x 10⁻⁴⁸</td>
<td>1.42 (1.20 – 1.66)</td>
</tr>
<tr>
<td>8</td>
<td>rs2458413</td>
<td>A</td>
<td>7.85 x 10⁻¹¹</td>
<td>1.51 (1.34 – 1.71)</td>
<td>1.09 x 10⁻²⁷</td>
<td>1.32 (1.19 – 1.46)</td>
</tr>
<tr>
<td>10</td>
<td>rs1561570a</td>
<td>T</td>
<td>9.56 x 10⁻¹⁸</td>
<td>1.71 (1.51 – 1.93)</td>
<td>2.09 x 10⁻²¹</td>
<td>1.64 (1.48 – 1.81)</td>
</tr>
<tr>
<td>14</td>
<td>rs10498635</td>
<td>C</td>
<td>1.51 x 10⁻⁶⁵</td>
<td>1.45 (1.23 – 1.71)</td>
<td>5.64 x 10⁻⁶⁰</td>
<td>1.42 (1.29 – 1.63)</td>
</tr>
<tr>
<td>15</td>
<td>rs5742915</td>
<td>C</td>
<td>1.40 x 10⁻⁸⁷</td>
<td>1.38 (1.22 – 1.54)</td>
<td>3.99 x 10⁻⁸⁴</td>
<td>1.32 (1.20 – 1.46)</td>
</tr>
<tr>
<td>18</td>
<td>rs3018362</td>
<td>A</td>
<td>1.87 x 10⁻¹¹</td>
<td>1.50 (1.34 – 1.69)</td>
<td>1.27 x 10⁻¹⁰</td>
<td>1.40 (1.26 – 1.55)</td>
</tr>
</tbody>
</table>

RA, risk allele; OR, odds ratio for the risk allele; CI, confidence interval; I², heterogeneity statistics; P_{het}, P-value for heterogeneity. Newly identified loci are shown in bold letters. *rs1561570 showed significant heterogeneity but random-effect results were genome-wide significant (P = 4.34 × 10⁻¹²; OR = 1.68).
ONLINE METHODS

GWAS stage study subjects. This study describes an extension to our previously reported GWAS of PDB in which we used genotype data from 692 PDB cases from our previously described study\(^1\), and extended the case group by genotyping an additional 57 PDB cases. The additional cases were selected from recently recruited subjects in the PRISM study\(^2\): a randomised trial of two different treatment strategies for PDB patients from the UK. We also increased the size of the control group by using genotype data from 2,930 subjects from the British 1958 Birth Cohort genotyped by the Wellcome Trust Case-Control Consortium\(^7\). This control group represents a better match to our PDB cases than the previous controls which were recruited from Scotland\(^1\) since, like the PRISM participants, they were recruited from all over the UK. The extended samples size used in this study provided 90% power to detect disease associated allele with MAF = 0.2 and genotype relative risk of 1.4 assuming a multiplicative model and a disease with population prevalence of 2%. This represents a substantial increase in power compared to our previous study\(^1\) where we had 20% power to detect alleles with genotyped relative risk of 1.4.

GWAS stage genotyping and quality control. Genotyping and quality control for the 692 PDB cases were performed using Illumina HumanHap300-Duo arrays as described previously\(^1\). The additional 57 PDB cases were genotyped using Illumina Human660W Quad version 1 arrays and quality control measures were applied as previously described\(^1\). Briefly; SNPs with call rate < 95% were excluded and samples with call rate < 90% (n=1); excess heterozygosity (n=1); and non-European ancestry (n= 6; Supplementary Fig. 4) were removed before analysis. The genotyping of the British 1958 Birth Cohort was previously performed by the Wellcome Trust Case-Control Consortium using the Illumina Human 1.2M Duo custom array (www.wtccc.org.uk).\(^7\) For the control group, SNPs with call rate <95% were excluded and we removed 231 samples because they failed at least one of the following quality control criteria: low call rate, non-European ancestry, gender mismatch, or cryptic relatedness. Population ancestry was determined using multidimensional scaling analysis of identity-by-state (IBS) distances matrix as previously described\(^1\). After quality control, we analysed 741 PDB cases and 2,699 controls with genotype data for 290,115 SNPs which were common to the three different genotyping arrays. To ensure consistent genotyping between different platforms, a subset of samples were genotyped using at least two different platforms and cross-platform genotype concordance rate was > 99.7% (Supplementary Table 4). Additionally, the genotype cluster plots for all SNPs showing association with PDB at \(P < 1.0 \times 10^{-4}\) were visually inspected in cases and controls and only high quality genotype data were
included in the analysis. Furthermore, genotype call rate for the top associated SNPs was consistent between cases and controls (Supplementary Table 5).

Replication samples. The replication study groups were derived from clinic-based PDB patients and gender-matched controls selected from the same region. Patients with SQSTM1 mutations were excluded and all study participants provided informed consent. The first replication cohort comprised 175 PDB patients from the UK; 8 PDB cases from Sydney Australia and 215 PDB cases from Western Australia. These patients were of British descent and were matched with 485 unaffected British controls. The second replication cohort (Italian replication cohort 1) comprised 354 PDB cases and 390 unaffected controls enrolled from various referral centres in Italy who took part in the GenPage project26. The third replication cohort (Italian replication cohort 2) comprised 205 Italian PDB cases and 238 unaffected controls enrolled from referral centres in Northern, Central and Southern Italy as previously described27. The fourth replication cohort comprised 246 sporadic PDB patients recruited from various referrals centres in Belgium and these were matched with 263 controls with no clinical evidence of PDB as previously described8. The fifth replication cohort comprised 85 PDB patients and 93 controls recruited from various centres in the Netherlands as described8. The sixth replication comprised 186 sporadic PDB cases recruited from the Salamanca region in the Castilla-Leon region of Spain and 202 unaffected controls from the same region.

Replication sample genotyping and quality control. Genotyping of replication samples was performed by Sequenom (Hamburg, Germany) using the MassARRAY iPLEX platform. To minimize genotyping bias due to variations between runs; DNA from cases and controls from the six different replication cohorts were distributed into 384-well plates so that each plate had the same number of cases and controls. We included 4000 known genotypes as a quality control measure and the concordance rate between the genotype calls was > 99.8%. We removed 64 samples due to low call rate (< 90%) and the call rate for all genotyped SNPs was >95%.

Imputation. Genome-wide genotype imputation for autosomal SNPs was performed using MACH29 and the HapMap European (CEU) phased haplotype data from release 22 were used as a reference. We excluded SNPs with poor imputation quality based on the estimated correlation between imputed and true genotypes (r^2 < 0.3). Additionally, a subset (2%) of known genotypes were masked during imputation and then imputed genotypes were
compared with true genotypes and the average per allele imputation error rate was 2.9%.
Imputed SNPs were tested for association using PorbABEL software30 implementing a
logistic regression model in which the allelic dosage of imputed SNP was used to adjust for
uncertainty in imputed genotypes.

Statistical analysis. Statistical analyses were performed using PLINK (Version 1.07)31
and R (v2.11.1). In GWAS stage, genotyped SNPs were tested for association with PDB using
standard allelic (1.d.f) χ^2 statistic. We also performed association testing using regression
models in which we adjusted for gender, population clusters (as determined by
multidimensional scaling analysis) but results were essentially identical to those obtained
from the standard allelic test reported here (data not shown). The genomic inflation factor λ_{GC}
was calculated based on the 90% least significant SNPs as described previously32. The
observed test statistic values were corrected using the genomic control method ($\lambda_{GC} = 1.05$;
Supplementary Fig. 3). Logistic regression was used to test for independent effects of SNPs
where the allelic dosage of the conditioning SNP was entered as a covariate in the regression
model. To assess if the reported associations were confounded by age, age of onset or
recruitment centre, we performed a regression analysis using case-only data from the GWAS
stage to test if any of these factors were associated with the top hits using linear regression
models. The results of this analysis showed no evidence to suggest that the reported
association is confounded by age, age of onset, or recruitment centre ($P > 0.10$). The cut off
point for genome wide significance was set as $P < 5 \times 10^{-8}$ as recently proposed33. Association
testing of replication data was performed in each replication cohort using standard (1.d.f) χ^2
statistic. To assess combined genetic effects, we performed meta-analysis of all studies using
the inverse-variance method assuming fixed-effect model. We also tested random-effects
model using DerSimonian-Laird method34 and between-study heterogeneity was assessed
using the Cochran’s Q and I^2 metrics. Heterogeneity was considered significant if $P_{het} < 0.05$.
The population attributable risk (PAR) for markers showing association with PDB was
calculated according to the following formula:

$$\text{PAR} = \frac{p(\text{OR}-1)}{[p(\text{OR}-1)+1]}$$

where p is the frequency of the risk allele in controls and OR is
the risk allele odds ratio. The cumulative PAR was calculated as follows: Cumulative PAR =
$$1 - \left(\prod_{i=n}^{1} (1-\text{PAR}_i) \right)$$

where n is the number of variants and PAR$_i$ is the individual PAR for the
ith SNP. The proportion of familial risk attributable to the identified loci was calculated as
previously described35 assuming a multiplicative model of association and a sibling relative
risk $\lambda_s = 7.0$ as estimated from previous epidemiological studies22. Regional association plots
were generated using the locuszoom tool36.
eQTL analysis. SNPs showing genome wide significant association with PDB (or those in strong LD; $D' \geq 0.8$) were tested for association with cis-allelic expression of gene transcripts located in the associated regions using publicly available eQTL data$^{24,37-40}$. Only cis-acting allelic associations located within 250 kb of either 5’ or 3’ end of the associated gene with expression P-value $< 1 \times 10^{-5}$ were considered. To avoid false detection, we excluded expression data if the gene probe contained a polymorphic SNP or was located in a highly repetitive sequence.
References

