Weekly doxorubicin and continuous infusional 5-fluorouracil for advanced breast cancer

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
British Journal of Cancer

Publisher Rights Statement:
available via europepmc open access link

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. Jun. 2017
Weekly doxorubicin and continuous infusional 5-fluorouracil for advanced breast cancer

H Gabra, DA Cameron LE Lee, J Mackay and RCF Leonard

ICRF Medical Oncology Unit and Longmore Breast Unit, on behalf of Edinburgh Breast Group, Western General Hospital, Edinburgh, UK.

Summary Drug scheduling alterations can improve the therapeutic index of both 5-fluorouracil and anthracyclines. We investigated a regimen of weekly doxorubicin and continuous infusional 5-fluorouracil (AcF) in loco-regionally recurrent and metastatic breast cancer. The aims of this phase II study were to use low-dose weekly anthracyclines in a patient group where liver metastases are a frequent problem, to optimise scheduling of 5-fluorouracil using continuous infusion and to conserve alkylating agent use for late intensification in responding patients. Fifty-six patients received 5-fluorouracil 200 mg m$^{-2}$ day$^{-1}$ and doxorubicin 20–30 mg m$^{-2}$ week$^{-1}$ for at least 6 weeks. Sixty-two percent were chemonaive. Patients were evaluated for dose intensity, response, toxicity and survival. Of the assessable patients, 76% achieved UICC response criteria (20% complete response, 56% partial response). WHO grade 3+ toxicities were: alopecia, 98%; mucositis, 62%; neutropenia, 22%; and grade 3 palmar–plantar syndrome, 24%. Median survival was 13 months, with visceral metastasis conferring a significantly worse outcome ($P=0.03$). Grade 3+ mucositis was more frequent with planned doxorubicin dose intensity ≥ 25 mg m$^{-2}$ week$^{-1}$ ($P=0.04$). AcF is highly active in breast cancer with acceptable toxicities and can be used before alkylating agent-based high-dose therapy.

Keywords: doxorubicin; dose intensity; metastasis; toxicity; survival

With the intention of achieving improved palliation and improved survival, we devised a regimen which aims to produce rapid remission induction with a high response rate and acceptable toxicity, while at the same time withholding alkylating agents for use in a high-dose intensification phase at the time of best conventional response. We chose the combination of weekly bolus doxorubicin and continuous infusional 5-fluorouracil (AcF). There has been interest recently in scheduling alterations of these agents in an attempt to produce improved response rates and increased dose AUCs while minimising acute toxicities, i.e. attempting to enhance the therapeutic index of these agents (Hansen et al., 1987; Twelves et al., 1991).

Weekly doxorubicin does not appear to compromise response rates in comparison to a 3 weekly schedule of the same total dose (Richards et al., 1992). Impaired liver function sometimes necessitates dose reduction of anthracyclines when used at conventionally 'maximum' doses. This problem can be circumvented by weekly therapy involving a similar or increased total anthracycline dose intensity but with lower peak plasma levels (Twelves et al., 1989).

We therefore designed a non-randomised single arm (phase II) study incorporating doxorubicin dose escalation to investigate this regimen in patients with aggressive loco-regional relapse and/or visceral metastatic disease. The primary end point for our study was response rate after at least 6 weekly cycles of AcF. We also report here toxicity, survival and disease progression data.

Patients and methods

Patient population

Approval for this study was obtained from the local medical ethics committee. Informed consent was obtained before commencement of treatment. Patients included had to be 60 years of age or less with a microscopically confirmed diagnosis of breast carcinoma, either loco-regionally recurrent or metastatic.

Disease present was required to be bi-dimensionally measurable. Performance status (ECOG) was required to be 3 or less. All patients had to be off all chemotherapy for at least 3 weeks (6 weeks in the case of mitomycin-C), have recovered from the toxic effects of previous chemotherapy and white cell count (WCC) $\geq 3 \times 10^9$ l$^{-1}$, platelets $\geq 100 \times 10^9$ l$^{-1}$. Pretreatment cardiac ejection fractions were mandatory and patients were excluded if they had any past history of cardiac disease or a cardiac ejection fraction less than 30%.

Treatment regimen

The treatment regimen consisted of continuous infusional 5-fluorouracil with weekly bolus doxorubicin (AcF). 5-FU at a constantly infused dose of 200 mg m$^{-2}$ day$^{-1}$ was given via a Hickman line using a continuous ambulatory drug delivery pump (Pharmacia 'CADD' or Medex 'Walkmed'). The reservoir of 5-FU was renewed weekly. The dose intensity of doxorubicin was adjusted to achieve optimisation and unselected cohorts of patients sequentially received intended doses of 20, 25 and 30 mg m$^{-2}$ week$^{-1}$ doxorubicin. Due to the observation that the 30 mg m$^{-2}$ week$^{-1}$ intended dose was difficult to achieve, a final cohort received a lower intended dose of 25 mg m$^{-2}$ week$^{-1}$ (see results below). Patients received AcF weekly as outpatients for 6 weeks and, if not progressing on therapy, went on to receive 12 weeks of therapy.

Dose modification

Full blood count was performed weekly. Doxorubicin was omitted for 1 week if neutrophils were below 1×10^9 l$^{-1}$ or platelets below 100×10^9 l$^{-1}$ or if severe (WHO grade III) mucositis occurred. 5-FU was discontinued for 1 week if neutrophils fell below 0.5×10^9 l$^{-1}$, if platelets fell below 50×10^9 l$^{-1}$, if severe (WHO grade III) mucositis occurred or if grade III palmar–plantar syndrome developed (Hansen et
al., 1987). Both drugs were omitted if any grade IV WHO
criteria toxicity occurred. Otherwise, patients received full-
dose therapy on time. If neutrophils fell below 1 x 10^9 l^-1,
patients received augmentin one tab tid, fluconazole 50 mg
daily and acyclovir 200 mg qid for 1 week as prophylaxis, in
addition to corsodyl mouthwash.

Assessment of patients

Symptom assessment, physical examination, haematological
and biochemical parameters and clinically indicated radi-
ology were performed 6 weekly to define disease response as
measured by standard UICC criteria (Hayward et al., 1977,
1978). Toxicity was assessed by WHO toxicity criteria
weekly. Patients continued to be seen 6 weekly after
completion of therapy. Selected patients who had an
objective response by UICC criteria (responses confirmed
by two measurements at least four weeks apart) were
considered for high-dose therapy with peripheral blood stem
cell (PBSC) support. Patients routinely discontinued AcF
treatment at 12 weeks if disease progression had occurred or
if they had had 3 consecutive weeks off therapy because of
toxicity.

Statistical methods

Fisher's exact test was used to compare groups for response
and toxicity. Survival of the cohort and its subgroups was
analysed by the Kaplan–Meier/log-rank method.

Results

Patient population

Fifty-six patients with metastatic and locally recurrent breast
cancer were entered over a period of 34 months between
February 1992 and December 1994 (mean age 43.4 years,
range 26–57 years). Fifty-four patients were assessable for
response. One patient had early grade 4 mucositis 3 weeks
into therapy. This patient was included in the dose intensity,
toxicity and survival analysis, but was excluded from the
response analysis. Another patient had essential information
missing and was excluded (Table I).

Of the 56 patients, 45 (80%) had metastatic disease, and
79% of patients had visceral metastases. Eleven patients
(20%) had loco-regional recurrence as their only site of
disease. Sites of metastases are described in Table I. The two
patients with brain metastases (who also had multiple
visceral sites of disease) additionally received whole-brain
palliative radiotherapy. All but one of those with bone
metastases had evaluable disease at other sites. This patient
had a large destructive symptomatic bi-dimensionally
measurable sternal metastasis extending into the adjacent
soft tissue.

Median performance status of all patients was 1 (WHO
criteria) with a range of 0–3. Patients received a median of
11 cycles of AcF (range 3–19) (see Table I).

Previous therapy

Twenty-one patients (38%) had received previous cytotoxic
chemotherapy. Of those who had had previous chemother-
aphy, only 2 patients had had more than one previous course.
Ten patients had received adjuvant cyclophosphamide,
methotrexate and 5-fluorouracil (CMF) chemotherapy, and
four had received other adjuvant regimens. Six had received a
previous course of CMF for relapsed disease, but only five
patients (13%) had previously received an anthracycline. In
contrast, all but one of those previously receiving chemotherapy
had bolus fluorouracil as part of adjuvant or non-
adjuvant treatment.

Intended and delivered chemotherapy doses

All patients were planned to receive continuous 5-FU
200 mg m^-2 day^-1 (dose intensity (DI)= 1400 mg m^-2
week^-1). The mean actual 5-FU dose delivered was
176 mg m^-2 day^-1 (DI= 1274 mg m^-2 week^-1) (see Table
II). Initially, we were cautious in prescribing doxorubicin; the
first 13 patients including five with impaired liver function
were prescribed 20 mg m^-2 weekly (one of these 13 had early

<table>
<thead>
<tr>
<th>Table I Patient characteristics</th>
<th>No. of patients</th>
<th>Percentage of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Mean age (range)</td>
<td>43.4 (26–57)</td>
<td></td>
</tr>
<tr>
<td>Locoregional disease only</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Metastatic disease</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>Visceral metastases</td>
<td>44</td>
<td>79</td>
</tr>
<tr>
<td>Multiple visceral sites</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>Number of metastatic sites involved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sites of metastasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locoregional/nodal</td>
<td>35</td>
<td>62</td>
</tr>
<tr>
<td>Hepatic</td>
<td>37</td>
<td>66</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>22</td>
<td>36</td>
</tr>
<tr>
<td>Bone</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>Brain</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Performance status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Median (range) oestrone receptor (fmol mg^-1 protein)</td>
<td>14 (0–149)</td>
<td>–</td>
</tr>
<tr>
<td>Previous hormonal therapy</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>Previous chemotherapy</td>
<td>21</td>
<td>38</td>
</tr>
<tr>
<td>No previous systemic therapy</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

Table II Comparison of intended and actual given dose intensities for three differing intended
doxorubicin dose intensities for the three patient cohorts

<table>
<thead>
<tr>
<th>Intended doxorubicin dose intensity</th>
<th>Intended doxorubicin dose intensity</th>
<th>20 m^-2 (n = 13)</th>
<th>25 m^-2 (n = 22)</th>
<th>30 m^-2 (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given DOX DI (mean)</td>
<td>14.9</td>
<td>19.5</td>
<td>20.2</td>
<td></td>
</tr>
<tr>
<td>Given DOX DI to PR (mean)</td>
<td>18.5</td>
<td>19.8</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td>Given 5-FU DI (mean)</td>
<td>190.6</td>
<td>166.9</td>
<td>180.5</td>
<td></td>
</tr>
<tr>
<td>Response rate (overall)*</td>
<td>99%</td>
<td>75%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>CR rate*</td>
<td>44%</td>
<td>20%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Weeks to PR (median)*</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Weeks to best response (median)*</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

* n = 12. Dox, doxorubicin; DI, dose intensity; PR, partial response; CR, complete response.
severe toxicity and was excluded from the response analysis, but was included in the dose intensity, toxicity and survival analysis. Observing adequate tolerance, we escalated to 25 mg m\(^{-2}\) weekly (nine patients) and then to 30 mg m\(^{-2}\) weekly (20 patients). Actual dose delivered, however, was reduced in the 30 mg m\(^{-2}\) week\(^{-1}\) intended dose level (Table II). Because of the difficulty in delivering 30 mg m\(^{-2}\) week\(^{-1}\), the last 13 patients enrolled at an intended dose of 25 mg m\(^{-2}\) week\(^{-1}\). The 25 mg m\(^{-2}\) week\(^{-1}\) intended dose level cohorts are grouped together in Table II (n = 22).

The mean intended dose for the entire patient cohort was 25.6 mg m\(^{-2}\) weekly. The mean delivered doxorubicin dose intensity resulting from delays or reductions was 18.7 mg m\(^{-2}\) week\(^{-1}\). The mean doxorubicin dose intensity delivered to first documentation of partial response was 21.6 mg m\(^{-2}\) week\(^{-1}\). The given doxorubicin dose intensities within the intended dose increment cohorts are shown in Table II.

Responses

Of 54 assessable patients, 11 (20%) achieved a complete response (CR) and 30 (56%) achieved a partial response (PR), giving an overall response (OR) rate of 76% (95% confidence interval, 62–87%). Four patients had progressive disease on therapy (Table III).

Of patients with visceral metastases (hepatic, pulmonary and brain), 14% achieved CR, with an OR of 76% (33/42). Of patients with hepatic metastases, 16% (6/37) achieved CR with 76% (28/37) OR. Of these patients, 26 had abnormal liver function tests (LFTs) and 22/26 responded (85%). Of those with normal LFTs, 6/11 responded (54%). This difference was owing to more partial responses in the group with abnormal LFTs. Three patients in each group (hepatic metastases with or without abnormal LFTs) had a complete response.

A median of 6 weeks therapy was required for patients to achieve PR, and the median time to best response was 11 weeks (range 5–17 weeks).

The responses noted were typically rapid with 68% of partial responses seen by 6 weeks and 88% of responses seen by 7 weeks. In many patients symptomatic and objective responses were seen by the second week, ahead of any clinically detectable toxicity.

Table III Response to AcF (n = 54)

<table>
<thead>
<tr>
<th>Response</th>
<th>No. of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>41/54</td>
<td>76(^*)</td>
</tr>
<tr>
<td>CR</td>
<td>11/54</td>
<td>20</td>
</tr>
<tr>
<td>PR</td>
<td>30/54</td>
<td>56</td>
</tr>
<tr>
<td>SD</td>
<td>9/54</td>
<td>17</td>
</tr>
<tr>
<td>PD</td>
<td>4/54</td>
<td>7</td>
</tr>
<tr>
<td>NA</td>
<td>2/54</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^*\)95% Confidence interval, 62–87%. PR, partial response; CR, complete response; SD, stable disease; PD, progressive disease; NA, not assessable for response.

The differences seen in response between groups receiving each intended dose (Table II) or actual given dose increments of doxorubicin intensity were non-significant by Fisher’s exact test.

Toxicity

As expected, the major toxicities of this regimen were mucositis, neutropenia, alopecia and the palmar–plantar syndrome (Table IV). There were 11 episodes (19%) of Hickman line complications (thrombosis, sepsis, line falling out) but no treatment-related deaths.

Fisher’s exact test was used to compare toxicity for intended doxorubicin dose intensities at the three levels of 20 mg m\(^{-2}\) week\(^{-1}\), 25 mg m\(^{-2}\) week\(^{-1}\) and 30 mg m\(^{-2}\) week\(^{-1}\). Those allocated to a planned dose of \(\geq 25\) mg m\(^{-2}\) week\(^{-1}\) doxorubicin suffered significantly more grade 3+ mucositis (\(P=0.04\)) compared with those with a planned dose intensity of \(\leq 25\) mg m\(^{-2}\) week\(^{-1}\).

Progression and survival

Thirty patients within the AcF group went on to receive PBSC-rescued high-dose therapy. These patients probably skew the progression-free and survival data. We have therefore not included Kaplan–Meier survival curves as they are not representative of the study regimen.

Median follow-up of the group is 18.5 months (range 9–38 months). Median overall survival of the whole group was 13 months and that of patients with visceral metastases 12 months. Those without evidence of visceral disease at entry did significantly better (\(P=0.037\)). Median time to progression for the whole group was 10 months. Progression-free survival for those without visceral metastases was also significantly longer (\(P=0.031\)).

Discussion

Several studies have suggested independent improvements in the therapeutic index of both 5-FU in breast (Hansen et al., 1987; Gordon et al., 1990) and colonic (Lokich et al., 1989) cancer; and of anthracyclines in breast cancer (Gordon et al., 1990) and non-small-cell lung cancer (Valdivieso et al., 1984) using frequent low-dose scheduling. Other studies in breast cancer have shown equal efficacy and toxicity of low dose weekly anthracyclines compared with the three weekly regimens but demonstrated worsened quality of life for the weekly regimen (Twelves et al., 1991; Richards et al., 1992). The AcF regimen has potential, through alterations of schedule, to improve the therapeutic indices of both 5-FU and doxorubicin. The data demonstrate that this regimen induces rapid remissions with a 20% CR rate, yet retains a tolerable toxicity profile. The CR rate for visceral metastases with AcF is similar to the aggressive Duke AFM remission induction regimen (achieved in 19% of their patients) (Jones et al., 1990).

Table IV Toxicities experienced with AcF (n = 55)

<table>
<thead>
<tr>
<th>WHO toxicity</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Grade 3 + 4 toxicity Number %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecia</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>54</td>
<td>0</td>
<td>54/55</td>
</tr>
<tr>
<td>Mucositis</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>33</td>
<td>1</td>
<td>34/55</td>
</tr>
<tr>
<td>Palmar-plantar syndrome(^*)</td>
<td>6</td>
<td>19</td>
<td>17</td>
<td>13</td>
<td>0</td>
<td>13/55</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>2</td>
<td>12/55</td>
</tr>
<tr>
<td>Nausea/vomiting</td>
<td>45</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0/55</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>51</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/55</td>
</tr>
</tbody>
</table>

\(^*\)Toxicity scale for palmar-plantar syndrome from Hansen et al., 1987.
Toxicities with this regimen are acceptable and the most troublesome of these, mucositis, was tolerated surprisingly well with an active prophylactic approach to mouth care. In the absence of any clinical difference in response between the 25 and 30 mg m\(^{-2}\) week\(^{-1}\) doxorubicin doses and in view of a relationship between higher doxorubicin dose intensity and grade 3 mucositis, we have now adopted a dose of 25 mg m\(^{-2}\) week\(^{-1}\) as being optimally tolerable and effective. Given the small subgroup numbers and the tight relative dose intensity range, it is not surprising that we failed to demonstrate a relationship between doxorubicin dose intensity and any of the outcome or toxicity parameters (apart from mucositis).

As this regimen was developed specifically for remission induction before high-dose therapy, some comments about the timing of the latter are pertinent. If response to conventional chemotherapy serves as a marker of optimal selection for intensification, then this is probably after the seventh cycle when 88% of responding patients should have achieved a partial response. If, however, maximal debulking is felt to be important, then the optimal timing of high-dose therapy lies between the tenth and twelfth cycle.

In our programme patients who achieve CR or definite PR are considered for the high-dose therapy/PBSC-rescue arm of the programme. It would not be done as a standard arm of the programme, but patients achieving a CR on chemotherapy may be considered for high-dose therapy, as it is likely that this additional treatment could improve survival. The potential benefit of high-dose therapy in these patients will be determined in future randomised trials comparing conventional chemotherapy with and without high-dose therapy.

Longer-term adverse effects such as cardiotoxicity may be reduced by alteration in the scheduling of anthracyclines (Torti et al., 1985; Valdivieso et al., 1984; Weiss and Manthel, 1980), and we felt that this was important as the probability of cyclophosphamide-induced cardiotoxicity is increased by prior doxorubicin therapy (Gottdienner et al., 1981). (Cyclophosphamide is used in the PBSC recruitment phase of our programme.) The concepts of dose intensity and dose scheduling cannot currently be unified into one theory for tumour response (Hryniuk and Brush, 1984). It is possible that there is an improvement in the therapeutic index of this regimen as a result of scheduling changes of these drugs. This may be due to increased dose intensity as a result of modified organ toxicity, but further studies are required to define this. Dose intensity analysis suggests that the relative dose intensities of 5-FU and doxorubicin in AcF compare favourably with other doxorubicin and 5-FU-containing regimens (Table V).

References

Altered doxorubicin/5-FU schedules in breast cancer

H Gabra et al

2012
