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Reconstructions of past climate have shown substantial decadal and centennial scale climate 

variability in Northern Hemisphere temperature records
1
. Past studies

2,3,4,5
 have found 

correlations between cold temperatures and reduced solar activity during the “little ice age” and 

suggest a solar role in the warmth of the “Medieval Climate anomaly”. However, the amplitude of 

long-term changes in solar forcing is poorly constrained
5,6

, with estimates ranging by almost an 

order in magnitude
7,8,9

. Modelling studies
10,11,12,13

 indicate that a weaker solar forcing agrees better 

with reconstructions, but are not conclusive. Here we use model-derived fingerprints for strong 

and weak solar forcing as well as combinations of other forcings to determine what range of 

response to solar forcing is consistent with past climate. We use a methodology
14

 that takes into 

account the contribution by internal climate variability, other external drivers and uncertainty in 

the temperature reconstructions and in the magnitude of the model response.  We find that a large 

solar effect on mean annual Northern Hemisphere temperatures over the past millennium is 

inconsistent with available temperature reconstructions, as is large solar forcing. We also find that 

volcanic eruptions and changes in greenhouse gases are the most important drivers of Northern 

Hemisphere temperature.  

 

Estimates of the solar signal have been made from the instrumental period
15,16

 but the presence of strong 

anthropogenic forcings and correlations with volcanic forcing requires  analysis over a long pre-

anthropogenic timescale. Previous studies have considered the last millennium but were limited to 

Energy Balance Model fingerprints when estimating the contribution by individual forcings, and 

detected a solar contribution to past Northern Hemispheric and European temperature in some 



 

 

reconstructions, but not in others
17,18

. Here we make use of a targeted large ensemble of simulations 

with an Atmosphere-Ocean General Circulation Model HadCM3
18,19,20 

(Table 1) combined with a large 

ensemble of Northern Hemispheric (NH) surface air temperatures (SAT) temperature reconstructions
23

 

allowing us to estimate the range of contributions by solar and other external forcings that is consistent 

with reconstructions of the last millennium, accounting for uncertainties. The result rules out very large 

forcing
7
. 

 

HadCM3 was driven with forcing estimates recommended by the third Paleoclimate Modelling Inter-

comparison Project
6
 using both a weak solar forcing reconstruction

8,9 
and a very strong solar forcing

7
. 

Details for other forcings, such as volcanic forcing
21

, land use
22

, well-mixed
 
greenhouse gases (GHGs)

6
 

and orbital forcing are given in Supplementary Information. Our long simulation with all relevant 

forcings (ALL long) agrees well with the instrumental data
23

 and a temperature reconstruction 

ensemble
24

 (Fig. 1a), both showing warmer temperatures in the 11
th

 and 12
th

 centuries (the “medieval 

climate anomaly”) and cooler temperatures in the 17
th

 century and early 19
th

 century, (the “little ice 

age”), with pronounced recent warming. The All long simulation is generally within the reconstruction 

ensemble, with short exceptions, most notably around 1000-1100. Many of the other discrepancies are 

in periods immediately following volcanic eruptions, where the simulated cooling is stronger than the 

response in reconstructions
25

. 

 

Our analysis makes use of the extremely high correlation, 0.97, between the strong and weak solar 

forcings on inter-decadal timescales (Supplementary Fig. S2) to linearly combine the All long 

simulation with a simulation with high solar forcing; Solar Shapiro (where the weak solar forcing 

already included in All long is taken into account, see Supplementary Information) yielding ‘All High 

Solar’, a composite all forcing simulation with strong solar forcing. All High Solar is too warm during 

the 12
th

 century, shows slightly lower mean correlations with the temperature reconstructions (0.51 

rather than 0.54) and leaves the envelope of the reconstructions more often; 283 out of a possible 996 



 

 

years compared to 141 for the All long run. This supports previous modelling studies which have also 

found poorer agreement of simulations with higher solar forcing to reconstructions
10,11,12,13

. Importantly 

the high solar forcing does not help to reconcile data and models for the very earliest part of the 

millennium, since when reconstructed temperatures are highest, solar forcing is low
11

. 

  

In order to estimate the role of individual forcings, we also performed an ensemble of individually 

forced simulations, starting in 1400 (Fig. 1b, Table 1; also Supplementary Information), which we can 

use to examine the contribution each forcing makes to changes in All long (fig. 1b). Over the 20
th

 

century, anthropogenic forcings dominates with GHGs the largest forcing, offset by the effect of 

anthropogenic aerosols and land use changes (Fig. 1c). Simulated pre-industrial changes in NH 

temperature are substantial but much smaller than the 20
th

 century increase. Volcanic aerosols not only 

lead to sharp transient drops in hemispheric temperatures but are also responsible for cooler climate 

over longer time scales
10,11,17,20

.  For example the large volcanic cooling seen in 1790-1830 (Fig. 1c, 

Supplementary Fig. S5). Fluctuations in the concentration of GHGs also have an impact, even before the 

simulated anthropogenic increase becomes apparent by the mid-19
th

 century with a GHG induced 

cooling during the 17
th

 century (Supplementary, Fig. S4). 

 

 The weak solar forcing is the smallest forcing we consider within the model (Figs. 1b,c), and does not 

show a significant effect on NH mean temperature during the three solar minima highlighted in Fig. 1c. 

The strong solar forcing gives 0.3K and 0.4K simulated cooling for the Maunder (1645-1715) and the 

Spörer (1460-1550) minima respectively. In the large solar forcing scenario the strongest pre-industrial 

forcing is solar. 

 

In order to resolve if solar forcing is a large or small contributor to NH mean temperatures, we estimate 

the magnitude of the response to solar and other forcings directly from temperature reconstructions. We 

do this by deriving a decadally smoothed (see Supplementary Information) “fingerprint” of expected 



 

 

change for NH SAT from each model ensemble that is driven by a particular external forcing (e.g. 

solar). The magnitude of this fingerprint is then estimated for each reconstruction, accounting for 

uncertainty both in the magnitude of the forcing and the sensitivity to forcing. This is done by ‘scaling 

factors’ that are determined by minimizing the difference between the reconstruction and a linear 

combination of fingerprints, using  total least squares regression
14

 (see methods). Therefore, we do not 

need to explicitly investigate different forcing amplitudes.  

 

We consider several important sources of uncertainty (see methods). Uncertainty in reconstruction 

method and proxy choice is estimated using the Frank et al.
24

 ensemble of 521 annual NH (0-90N, land 

and ocean) SAT reconstructions. This ensemble was derived from 9 independent published 

reconstructions each using a different reconstruction technique and different proxy sources. However, 

that many local records are shared between reconstructions). Uncertainty arising from the choice of 

calibration period is sampled within the reconstruction ensemble
24

.  Uncertainty arising from the 

presence of internal climate variability in both fingerprints and reconstructions is estimated using 

variability taken from the control simulations of four different climate models. We only use regression 

results for which the residual variability is consistent with the model derived estimates of internal 

variability (see methods and Supplementary Information). However our key results are insensitive to 

this criterion (Supplementary Fig. S11). 

 

We first carried out the analysis for 1000-1900; deriving fingerprints for all forcings and solar forcing 

from the NH SAT All long and Solar Shapiro simulations. The results of the multiple regression can be 

interpreted to estimate the linear scaling (Fig. 2a) for solar forcing and for all forcings other than solar 

forcing (termed ALL_nosol, see methods). Approximately 90% of the reconstructions have residuals 

consistent with model internal variability (Supplementary Table S2). For these consistent 

reconstructions we detected the effect of ALL_nosol in all the reconstructions, indicating a clear 

response of NH SAT to external forcing. The estimated amplitude of the solar response is consistent 



 

 

with both no, or a weak solar forcing response. None of the scaling values found supports an estimated 

solar response as large as the simulated response to the Shapiro forcing. 

 

We determined the role of individual forcings using fingerprints for 1451-1900 from our individually 

forced simulations, a period when temperature reconstructions are based on more and denser sampled 

data, thus providing a better constraint
1
. The contribution from volcanic, solar and GHG forcings can be 

estimated separately using fingerprints of NH SAT taken from the VOLC, GHG and Solar Shapiro 

simulations. Other forcings have a small simulated impact during this period (Fig. 1). We find a 

detectable volcanic signal in all reconstructions, indicating the clear presence of a volcanic effect (Figs. 

2b,d). The majority of scaling factors are less than one, which indicates that the forced response to 

volcanic eruptions is likely larger in the simulations than in the reconstructions. This could be due to 

errors in the forcing, an overestimate of the forcing by large eruptions
26

, a muted response in proxy 

records
27,28

, a too strong model response, or a combination of these
25

. The GHG fingerprint was detected 

in 85% of reconstructions as well as in the average reconstruction, indicating a detectable role of GHGs 

prior to 1900 (Figs. 2c,d). Since the 5-95% range for β encompasses unity the results are consistent with 

a correctly modelled response to this forcing.  The 5-95% range of the solar forcing is again compatible 

both with no or a weak effect from solar forcing, but rules out a role of solar response as large as that in 

Solar Shapiro (Fig. 2b,c).  The scaling factors for the solar and volcanic fingerprint are quite well 

separated, indicating that the solar and volcanic response can be well separated from inter-decadal data, 

despite correlation, on long timescales (Fig. 2b and supplementary Fig. S6).  The confidence intervals 

estimated for the average reconstruction, which arise entirely from internal variability, are much smaller 

than the confidence interval from the combined results from individual reconstructions. This indicates 

that a large part of the uncertainty in the estimated contribution by forcings arises from differences 

between reconstructions.   

 

These results can be used to estimate the contribution to actual reconstructed inter-decadal NH 



 

 

temperature variability by individual forcing (Fig. 2e). Volcanic and GHG forcings appear to contribute 

most to pre-20
th

 climate variability, while the contribution by solar forcing is modest, agreeing with the 

simulations with low solar forcing. The 95% upper limit on the solar scaling factor β rules out a solar 

contribution since the Maunder Minimum that is greater than about 0.15K. Although solar forcing may 

be relatively unimportant for large-scale climate change, it could still play a significant role in regional 

and seasonal variability
5,29

 due to its influence on climate dynamics, an influence that is strongly 

diminished when averaging annually and over the whole NH. Similarly, missing solar-ozone feedback 

in our model
30

 should also predominantly impact regional temperatures
5
. Should it, however, enhance 

the NH temperature response to solar forcing it would result in smaller (not larger) scaling factors (Fig. 

2). 

 

We believe that our results are robust despite remaining uncertainties. Though our fingerprints are taken 

from simulations with a single climate model our results depend on only the temporal pattern of the 

fingerprint time series and not on its magnitude, as an incorrect magnitude would be corrected by the 

scaling factor. Smoothed hemispheric mean timeseries using different models driven with combined 

forcings are highly correlated, suggesting that our results are largely model independent (Supplementary 

Fig. S7).  A perfect model analysis shows that we can retrieve the response to known large solar forcing 

from a simulation with a different climate model (Supplementary Fig. S8). In contrast, and similar to 

results based on reconstructions, the solar forcing fingerprint is not detectible in simulations with weak 

solar forcing. Furthermore, our method does not allow for nonlinearities in combinations of forcings, 

but such effects are small in HadCM3 (Supplementary Fig. S9).  

 

 Though our results rule out solar forcing as a strong driver of pre-20
th

 century NH temperature 

variability this does not, in itself, rule out the possibility of strong solar forcing. However, for solar 

forcing to be large the response to it would have to be almost an order of magnitude smaller in the real 

world than in the model, with the sensitivity to it dramatically different from the sensitivity to other 



 

 

forcings (Fig. 2). As we consider this highly unlikely, we conclude that large solar forcing is inconsistent 

with reconstructions of climate of the past millennium. 

 

Methods:  

To estimate the contribution of combinations of different forcing to NH SATs we use total least squares 

(TLS)
14

 regression which allows for the presence of noise in the regressor and regressor target. 

 

Y(t) = ∑ (Xi(t) − υi(t))βi + υ0(t)
m

i=1
 .                                                                                        (1) 

 

This assumes that the temperature reconstruction, Y, is a linear combination of m different fingerprints 

Xi for the response to different external forcing, taken from simulations. Each fingerprint has associated 

internal variability νi (with variance that is reduced due to ensemble averaging), and the reconstruction 

contains a realization of internal variability ν0. The scaling factors βi determines the magnitude of the 

fingerprint in reconstructions, and the response to a forcing is considered detectable if its scaling factor 

is significantly positive. For both the model fingerprints and control simulations spatial annual means of 

0-90N land and sea are calculated corresponding to the area represented by the reconstructions. All 

reconstructions and model simulations are decadally smoothed (see SI). The scaling factors 𝛽𝑖 and the 

noise-reduced fingerprints and reconstructions, �̃� (i.e. an estimate of the true underlying response to 

forcing as represented in model simulations �̃�, and reconstructions, �̃�) are calculated following Allen 

and Stott
14

, where: 

 

�̃� = [�̃�, �̃�] 

�̃� = 𝑌(𝑡) − υ0(t)           �̃�   =  ∑ (Xi(t) − υi(t))
m

i=1
                                                        (2) 

 

To evaluate the self-consistency of the regression result the residuals were checked against estimates of 



 

 

model-based internal variability. If a fit to a reconstruction yields a regression residual with a chi-

squared value (eq. 26 in Allen and Stott
14

) that is smaller than the sum-of-squares of ~90% of the 

control samples it is included in further analysis, if not, the results for that reconstruction are not used as 

the regression residual is not consistent with the assumption made in eq. 1, (this is the same test as is 

used in ref. 24). To construct the model based samples of internal variability used for this test, we use 

control simulations from 4 different model simulations (HadCM3, GISS-E2-R, MPI-COMOS and MPI-

ESM-P, for details see SI section 5) which are sliced into 14 and 18 non-overlapping chunks for use 

with the analysis periods 1000-1900 and 1401-1900 respectively. For the former, the fit is rejected if the 

residual is larger than 2 of the 14 samples, in the latter case it is rejected if larger than 3 of the 18 

samples. The uncertainty due to internal variability is then calculated by superimposing different 

random samples of the model-based internal variability onto both noise reduced observations and model 

fingerprints �̃�.  This is repeated 2000 times to calculate a distribution of 2000 β-values.  

 

The 2000 realisations of β for all reconstructions which pass the consistency test are then combined 

together to form one distribution. This distribution accounts for uncertainty in both reconstruction and 

internal variability. The 5-95% range and median value of β are then calculated from this distribution.  

The analysis is also repeated using the mean of all 521 reconstructions. 

 

For 1000-1900, a multiple linear regression of the reconstructions on All long and Solar Shapiro 

fingerprints was performed:   

 

Y = β1(ALL long + ν1) + β2(Solar Shapiro + ν2) + ν0                                                               (3) 

Y = β1 (
Solar Shapiro

∝
+ ALL nosol +  ν1) + β2(Solar Shapiro + ν2) + ν0                                    (4) 

 

This makes use of All long containing a contribution from the weak solar forcing, assuming that All 

long is a sum of the effect of solar forcing and an effect from all other forcings (All_nosol), and that the 



 

 

strong forcing is, for the filtered data, a scaled version of the weak forcing (see SI). Rearranging this for 

All_nosol and Solar_shapiro separately yields scaling factors for those forcings: 

 

βAll_nosol = β1                                                                                                                                        (5)                   

βSolar (Shapiro) =
β1

α
+ β2   (6)                                                  

Where α = 8.5 (see SI). 

 

For the 1400-1900 period the Solar Shapiro simulation, the ensemble mean of the GHG simulations 

and the ensemble mean of the VOLC simulations were used as externally forced fingerprints (Xi) for a 

three fingerprint analysis (i.e. m is equal to 3 in eq. 1). The Solar Shapiro simulation was used instead 

of the ensemble mean of Weak Solar because the signal-to noise ratio of the Weak Solar simulations 

was too low to be detectable (see SI, fig S8c).  

 

To derive the contribution to inter-decadal NH temperature variability by the individual forcings the 

noise reduced fingerprints �̃�, calculated through the TLS analysis, for each fit which passed the  

consistency test, were scaled by their best estimate β values and the standard deviation calculated. The 

median and 5-95% range was then calculated from the distribution. The standard deviation of internal 

variability was calculated for each TLS fit which passed the residual consistency test. It was taken as the 

maximum standard deviation of any of the samples of internal variability ν0..n in eq. 1, calculated from 

the difference between the original observations and fingerprints, and their noise-reduced counterparts, 

�̃�. The median value and 5-95% range was taken from the resulting distribution.  

 

Correspondence and requests for material should be directed to Andrew Schurer, email: 

a.schurer@ed.ac.uk 

 

Acknowledgements: Work funded by NERC grant NE/G019819/1. We acknowledge CMIP5 and 

mailto:a.schurer@ed.ac.uk


 

 

PMIP3, and we thank the climate modelling groups (listed in section 6 of the SI) for producing and 

making available their model output, Gareth Jones for making a long HadCM3 control simulation 

available for our use, David Frank for making his reconstructions available, for providing code to 

perform the cubic spine smoothing and for several helpful comments and Matthew Williams, Julia 

Pongratz and Thomas Crowley for advice in forcing implementation.  

 

Author Contributions: AS & ST set up and carried out the simulations. AS & GH carried out the 

fingerprinting analysis. All contributed to the writing and the design of modelling and analysis strategy. 

 

References: 

1. Jansen, E. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 

433–497 (Cambridge Univ. Press, 2007).  

2. Eddy, J.A. Maunder Minimum. Science, 192, 1189–1202 (1976) 

3. Swingedouw, D., L. Terray, C. Cassou, A. Voldoire, D. Salas-Mélia, and J. Servonnat. Natural 

forcing of climate during the last millennium: Fingerprint of solar variability. Clim. Dyn. 36, 1349-

1364 (2011). 

4. Van Hateren J. H. A fractal climate response function can simulate global average temperature 

trends of the modern era and the past millennium Clim. Dyn.  40, 2651-2670 (2012) 

5. Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, RG4001 (2010). 

6. Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the last 

millennium (v1.1). Geosci. Model Dev. 5, 185–191 (2012)  

7. Shapiro, A. I., et al. A new approach to the long-term reconstruction of the solar irradiance leads to 

large historical solar forcing. Astron. & Astrophys., 529, A67 (2011). 

8. Steinhilber, F., Beer, J., and Fröhlich, C. Total solar irradiance during the Holocene, Geophys. Res. 

Lett., 36, L19704 (2009). 

9. Wang, Y.-M., Lean, J. L., & Sheeley, N. R. Modeling the Sun’s magnetic field and irradiance since 



 

 

1713. The Astrophys. J. 625, 522–538 (2005). 

10. Ammann, C. et al. Solar influence on climate during the past millennium: Results from transient 

simulations with the NCAR Climate System Model. Proc. Natl Acad. Sci. USA 104, 3713-3718 

(2007). 

11. Jungclaus, J. H., et al. Climate and carbon-cycle variability over the last Millennium. Clim. Past 

Discuss. 6, 1009-1044, (2010).  

12. Feulner G. Are the most recent estimates for Maunder Minimum solar irradiance in agreement with 

temperature reconstructions? Geophys. Res. Lett. 38:L16706 (2011). 

13. Hind A, & Moberg A. Past millennial solar forcing magnitude. Clim. Dyn. Online First (2012) 

14.  Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. 

Clim. Dyn. 21, 477-491 (2003). 

15. Stott, P. A., Jones, G. S. & Mitchell, J. F. B. Do models underestimate the solar contribution to 

recent climate change? J. Clim. 16, 4079−4093 (2003)  

16. Benestad, R.E. & Schmidt, G.A. Solar trends and global warming J. Geophys. Res. 114, (2009) 

17. Hegerl, G. C. et al. Detection of human influence on a new 1500 yr climate reconstruction. J. Clim. 

20, 650-666 (2007). 

18. Pope, V. D. Gallani, M. L. Rowntree, P. R. and Stratton, R. A. The impact of new physical 

parametrizations in the Hadley Centre climate model - HadAM3. Clim. Dyn., 16, 123-146 (2000). 

19. Gordon, C. et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the 

Hadley Centre coupled model without flux adjustments. Clim. Dyn., 16, 147-168 (2000) 

20. Tett, S. F. B. et al. The impact of natural and anthropogenic forcings on climate and hydrology since 

1550. Clim. Dyn. 28, 3-34 (2007). 

21. Crowley, T. J. et al. Volcanism and the little ice age. PAGES News 16, 22-23 (2008). 

22. Pongratz, J. Reick, C. Raddatz, T. and Claussen M. A reconstruction of global agricultural areas and 

land cover for the last millennium. Global Biogeochem. Cycles 22, GB3018, (2008) 

23. Morice, C. P. Kennedy, J. J. Rayner, N. A. and Jones, P. D. Quantifying uncertainties in global and 



 

 

regional temperature change using an ensemble of observational estimates: The HadCRUT4 data 

set. J. Geophys. Res. 117, D0810  (2012) 

24. Frank, D. C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to 

climate. Nature 463, 527-530 (2010). 

25. Schurer, A. P. Hegerl, G. C. Mann, M. E.  Tett, S. F. B. Phipps, S. J. Separating Forced from Chaotic 

Climate Variability over the Past Millennium. J. Climate, 26, 6954–6973 (2013). 

26. Timmreck, C. et al. Limited temperature response to the very large AD 1258 volcanic eruption. 

Geophys. Res. Lett. 36, L21708 (2009) 

27. Mann, M. E. Fuentes, J. D. and Rutherford, S. Underestimation of volcanic cooling in tree-ring-

based reconstructions of hemispheric temperatures. Nat. Geosci. 5, 202–205 (2012) 

28. Anchukaitis, K. et al. Tree rings and volcanic cooling. Nat. Geosci., 5, 836–837 (2012) 

29. Woollings, T., Lockwood, M. Masato, G. Bell, C. and Gray, L.  Enhanced signature of solar 

variability in Eurasian winter climate. Geophys. Res. Lett. 37, L20805 (2010). 

30. Shindell, D. T. Faluvegi, G. Miller, R. L.  Schmidt, G. A.  Hansen, J. E. and Sun, S. Solar and 

anthropogenic forcing of tropical hydrology. Geophys. Res. Lett., 33, L24706 (2006) 

Hegerl, G., et al. Influence of human and natural forcing on European seasonal temperatures. Nature 

Geoscience. 4, 2, 99-103 5 (2011) 

 

 

 

 

 

 

 

 

 

 

 



 

 

Name Years No. of Forcings 

 (C.E.) runs Solar Volcs GHGs LUSE AER O3 Orb 

All long 800-

2000 

1     >1820   

CTL850 800-

2000 

1 850 800- 

850 

800-

850 

825 0 PI 825 

Solar 

Shapiro 

800-

2000 

1  

Shapiro 

800- 

850 

800-

850 

825 0 PI 825 

All 1400-

2000 

3     >1820   

Weak 

Solar 

1400-

2000 

4  0 1400 1400 

 

0 PI 1400 

VOLC 1400-

2000 

3 1400  1400 1400 

 

0 PI 1400 

GHG 1400-

2000 

4 1400 0  1400 

 

0 PI 1400 

NoLUSE 1400-

2000 

4    1400 >1820   

NoAER 1750-

2000 

4     0   

 

 

Table 1 - Details of experimental design. A tick indicates where the simulations included the forcing for 

the whole time period. AER indicates aerosols and LUSE Land use. Where a single year or range is 

given the forcing was constant at the year or range. PI is pre-industrial ozone. 

 

 

 

 



 

 

 

 

Fig. 1: Simulations and temperature reconstructions. (a) Simulations with all forcings (coloured) 

compared to a reconstruction ensemble(blue)
14

, and instrumental HadCRUT4
30

 time series (centred on 

the average reconstruction over time of overlap, black). Major volcanic eruptions are shown as grey 

vertical lines. (b) Ensemble mean individual forcing experiments (colour, see Table 1) compared to 

reconstruction ensemble (light grey). (c) Simulated contribution by individual forcings (colours as in b) 

to periods coinciding with three solar minima (highlighted grey in b) and the last 50-years (note 

different scale) with their 95% uncertainty. An asterisk indicates when the contribution by a forcing is 

significant at the 5% level (see Supplementary Information). 

 

 

 

 



 

 

 

 

Fig. 2:  Estimated response to forcings  (a) Amplitude of ALL_nosol  (horizontal) and  Solar Shapiro 

(vertical) for 1000-1900. (b,c,d) Amplitudes of VOLC, GHG and Solar Shapiro for 1450-1900.  In plots 

a-d blue shading shows joint probability density of β values (see methods). Vertical and horizontal lines 

show β for a signal that is absent from the reconstructions (solid),  consistent with the forcing in All 

long (dashed), and  consistent with strong solar forcing
7
 (dotted). Bars show the 5-95% range of 

individual signal amplitudes using all reconstructions (blue) and the average reconstruction (green). (e) 

Estimated contribution by forcings to NH inter-decadal variability (one standard-deviation). Cross 

shows best estimate, bar the 5-95% range, and short dash to the left the un-scaled model results with 

both the low and high solar forcings.  

 


