Outcome after conservative management or intervention for unruptured brain arteriovenous malformations

Citation for published version:

Digital Object Identifier (DOI):
10.1001/jama.2014.3200

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
JAMA: the Journal of the American Medical Association

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Outcome after conservative management or intervention for unruptured brain arteriovenous malformations

Prof Rustam Al-Shahi Salman PhD,1 Prof Philip M White FRCR,2 Carl E Counsell MD,3 Johann du Plessis FRCR,4 Janneke van Beijnum MD,5 Colin B Josephson MD,6 Tim Wilkinson MRCP,1 Catherine J Wedderburn MBChB,7 Zoe Chandy MB ChB,1 E Jerome St George FRCS(SN),4 Prof Robin J Sellar FRCR,1 Prof Charles P Warlow FRCP1 for the Scottish Audit of Intracranial Vascular Malformations collaborators.*

1 Division of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh. UK
2 Institute for Ageing and Health, Newcastle University, Newcastle-upon-Tyne. UK
3 Division of Applied Health Sciences, University of Aberdeen, Aberdeen. UK
4 Institute of Neurological Sciences, Southern General Hospital, Glasgow. UK
5 Department of Neurosurgery, Leiden University Medical Center, Leiden. The Netherlands
6 Department of Clinical Neurosciences, University of Calgary, Calgary. Canada
7 UCL Institute for Global Health, London. UK

Corresponding Author
Prof Rustam Al-Shahi Salman, Bramwell Dott Building, Division of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh. EH4 2XU. UK. email: Rustam.Al-Shahi@ed.ac.uk, tel/fax. +44 (0)131 537 2944

Word Counts
Abstract: 350
Body text only (excluding title, abstract, references, tables, and figure legends): 3,262

See SAIVMs collaborators listed at the end of the manuscript
ABSTRACT

Importance – Whether conservative management is superior to interventional treatment ('intervention') for unruptured brain arteriovenous malformations (bAVMs) is uncertain, because of the shortage of long-term comparative data.

Objective – Long-term comparison of outcomes of conservative management versus intervention for unruptured bAVM.

Design – Population-based inception cohort study of adults resident in Scotland, first diagnosed with an unruptured bAVM during 1999-2003 or 2006-2010, and followed prospectively using multiple sources to assess handicap and to identify and validate outcome events over 12 years of prospective follow-up.

Exposures – We compared associations with conservative management (without intervention) versus intervention (endovascular embolization ± neurosurgical excision ± stereotactic radiosurgery).

Main outcomes and measures – Cox regression analyses, with multivariable adjustment for prognostic factors and baseline imbalances if hazards were proportional, to compare rates of the primary outcome (death or sustained morbidity of any cause, Oxford Handicap Scale score [OHS] ≥2 for at least two successive years [0=no symptoms and 6=death]) and the secondary outcome (non-fatal symptomatic stroke or death due to bAVM, associated arterial aneurysm or intervention).

Results – Of 204 adults, 101 underwent intervention; they were younger, more likely to have presented with seizure(s), and less likely to have large bAVMs than adults managed conservatively. During a median follow-up of 6.9 years (94% completeness), the rate of progression to the primary outcome was lower with conservative management during the first four years of follow-up [16 deaths (4.0 per 100 person-years) and 20 OHS 2-5 (5.5 per 100 person-years) versus 4 deaths (1.0

Page 2 of 27
per 100 person-years) and 35 OHS 2-5 (8.8 per 100 person-years), adjusted hazard ratio (HR) 0.59, 95% confidence interval (CI) 0.35 to 0.99, but rates were similar thereafter. The rate of the secondary outcome was lower with conservative management during 12 years of follow-up [14 events (1.6 per 100 person-years) versus 38 events (3.3 per 100 person-years), adjusted HR 0.37, 95% CI 0.19 to 0.72].

Conclusions and relevance — Among adults diagnosed with unruptured bAVM, the use of conservative management compared with intervention was associated with better clinical outcomes over 4 years. Longer follow-up is required to understand whether this association persists.
INTRODUCTION

Unruptured brain arteriovenous malformations and their associated feeding/nidal arterial aneurysms (collectively termed ‘bAVM’) have ~1% annual risk of intracranial hemorrhage,\(^1,^2\) which has a one year case fatality of 12%,\(^3\) in studies lasting up to ten years.\(^4\) Interventional treatment (‘intervention’) by neurosurgical excision, endovascular embolization, or stereotactic radiosurgery can be used alone, or in combination, to attempt to obliterate bAVMs, dependent on their vascular anatomy.\(^5\) Because interventions may have complications\(^6\) and the untreated clinical course of unruptured bAVMs can be benign,\(^1^-^4\) some patients choose conservative management (without intervention). Unruptured bAVM intervention has been compared with conservative management in a concurrent control group in just one randomized trial (ARUBA [ISRCTN44013133])\(^7^-^9\) and only a few observational studies, all of which have shown harm from intervention in the short-term.\(^10,^11\) Guidelines have endorsed both intervention and conservative management for unruptured bAVMs.\(^12,^13\) Therefore, we began a study in 1999 to assess the long-term outcome for adults affected by bAVM, with or without intervention, in everyday clinical practice.\(^14,^15\)

METHODS

The Scottish Intracranial Vascular Malformation (IVM) Study (SIVMS) is a prospective, population-based cohort study that uses anonymized data extracts from the National Health Service Scottish Audit of IVMs (SAIVMs). SAIVMs included adults who were aged ≥16 years and resident in Scotland when first diagnosed with bAVM in 1999-2003 or 2006-2010 (www.saivms.scot.nhs.uk). The audit protocol (www.saivms.scot.nhs.uk/pdf/2008_06_SAIVMs%20protocol_v2.pdf) and research protocol (http://docdat.ic.nhs.uk) are published. SAIVMs identified patients through multiple
overlapping sources of case ascertainment that included a Scotland-wide collaborative network of
neurologists, neurosurgeons, stroke physicians, radiologists, and pathologists and central registers
of hospital discharges and death certificates.15

Ethical approval

The Multicentre Research Ethics Committee for Scotland (MREC/98/0/48) and the Fife and Forth
Valley Research Ethics Committee (08/S0501/76) approved the conduct of observational studies
(to which an opt-out consent policy applied) and postal questionnaire studies (which required opt-in consent).

Eligibility criteria

In this analysis, we included adults in SIVMS with a radiographically- or pathologically-confirmed
first-in-a-lifetime definite diagnosis of a bAVM in 1999-2003 or in 2006-2010 inclusive, which was
unruptured when diagnosed. The term ‘bAVM’ included associated nidal/feeding arterial
aneurysms, but not intracranial aneurysms remote from the bAVM its arterial supply. We
classified adults as receiving intervention if they underwent any of the following treatments for
their unruptured bAVM, either alone or in any combination, before the end of follow-up:
microsurgical excision, stereotactic radiosurgery, or endovascular (glue or coil) embolization. We
classified adults as undergoing ‘conservative management’ if they did not receive any of these
interventions. Decisions about intervention were left to patients and their physicians.
Diagnostic verification

Four experienced neuroradiologists verified certainty of bAVM diagnosis on diagnostic brain imaging that had been performed in clinical practice (supported by the Systematic Image Review System tool; http://www.neuroimage.co.uk/sirsinfo/). They determined surgical eloquence of nidus location and used catheter angiography to describe vascular anatomy or MRI to measure nidus size.

Baseline characteristics

We reviewed family (general) practitioner and hospital medical records to establish demographics, medical histories, and the consequences of bAVM presentation on the Oxford Handicap Scale (OHS), which is a derivative of the modified Rankin Scale, ranging from 0 (no symptoms) to 6 (death). We reviewed these medical records, brain imaging and reports of pathological examinations to classify the mode of bAVM presentation and clinical outcome events during follow-up. When assessing clinical events at presentation and during follow-up, we also classified whether they were definitely, possibly, or definitely not attributable to the bAVM or an intervention complication. We classified events as possibly attributable to the bAVM when clinical features were anatomically consistent with bAVM location, but another cause (e.g. ischaemic stroke) was possible and neuroradiological investigation had identified neither bAVM hemorrhage nor an alternative cause. We regarded presentations as ‘incidental’ if the adult had been asymptomatic or if we could not definitely relate their symptoms to the underlying bAVM (e.g. headache); we attributed presentations to epileptic seizure(s) if a seizure was neither symptomatic of a concomitant intracranial hemorrhage nor more likely to be due to another cause.
Follow-up

The inception point for conservative management was an adult’s presentation, which was the date of symptom onset or medical consultation (if asymptomatic) that led to an investigation diagnosing the bAVM. The inception point for intervention was the date of the first intervention for an unruptured bAVM that proceeded after presentation. Follow-up occurred prospectively on an uninterrupted annual basis, using a postal questionnaire to every adult’s family practitioner and annual surveillance of family practitioner and hospital medical records, to identify outcome events that had occurred over the preceding year. Consenting participants completed postal questionnaires on each anniversary of bAVM diagnosis, to identify outcome events and assess handicap on the OHS. Two investigators (CPW or RA-SS) independently assessed symptomatic clinical outcome events, using all the contemporaneous clinical, radiographic and pathological records available. In attributing the mode and cause of death we reviewed death certificates, autopsy reports if performed, and clinical records and brain imaging if death occurred in hospital.

Extent of bAVM obliteration was assessed from reports of angiographic brain imaging after intervention. We gave precedence to obliteration confirmed by catheter angiography, otherwise we relied on magnetic resonance angiography.

Statistical methods

Baseline characteristics

For analyses of clinical covariates, age was a continuous variable, OHS at presentation was dichotomized into 0-1 versus 2-5, and mode of presentation was dichotomized into seizure(s).
versus other (although, if following presentation a clinical event occurred which led to intervention, this subsequent event became the mode of presentation in the intervention group). We dichotomized bAVM nidus location into deep (involving the basal ganglia, internal capsule, thalamus, hypothalamus, limbic system, or corpus callosum) versus other. We dichotomized venous drainage into exclusively deep versus other, and bAVM nidus maximum diameter into <3cm versus ≥3cm. We separately derived the bAVM Spetzler-Martin grade, which predicts the likelihood of morbidity from bAVM excision based on bAVM size, venous drainage pattern, and eloquence of surrounding brain (grade 1 lowest risk to grade 5 highest risk).16

Follow-up

The primary outcome was the first occurrence of handicap (OHS 2-5, signifying, “some restrictions to lifestyle, but the patient can look after themselves” or worse) sustained for at least two successive years after inception (i.e. the baseline OHS rating was not included in the outcome measure) or death (OHS 6) of any cause. The secondary outcome was non-fatal symptomatic stroke (intracranial hemorrhage, cerebral infarction, or focal neurological deficit persisting or progressing for >24 hours) or death due to the bAVM or intervention.

Sample size

The number of adults diagnosed with unruptured bAVM in our population over ten years determined our sample size, but the timing of our analyses during follow-up was determined by the accumulation of sufficient primary and secondary outcomes to power the multivariable model to include five important covariates without over-fitting.20
Analytical methods

RA-SS conducted analyses according to a statistical analysis plan approved by the Steering Committee before data extraction (www.saivms.scot.nhs.uk/pdf/resPaper/2013_07_05_SAP.pdf). Completeness of follow-up data was quantified as a proportion of all the potential follow-up time that could have been accrued prior to death or the last available follow-up. Survival analyses of time to first event started at inception and stopped at the date of the first outcome or the date of censoring, whichever occurred sooner. For the primary outcome censoring occurred at last available follow-up, before which we disregarded missing OHS scores. For the secondary outcome, censoring occurred at last available follow-up or death (possibly or definitely not attributable to bAVM). Adults managed conservatively who had a secondary outcome event that led to intervention remained in the conservative management group for outcome analyses.

Bivariate analyses were performed using life tables and Kaplan-Meier estimates to analyze follow-up data accrued by 12 years (when ~10% of the cohort remained under follow-up) with differences between intervention and conservative management determined by the log-rank test and hazard ratio (HR) from Cox regression, with intervention as the referent category. We pre-specified multivariable analyses to adjust HRs when proportional hazards assumptions were satisfied. Covariates were selected from the following list, in the following order which was determined by the clinical relevance and likely completeness of the covariates, until the number of outcomes per covariate would be below ten with the addition of another covariate: clinical influences on functional outcome ([1] age at inception, [2] mode of clinical presentation, and [3] baseline OHS score [for the primary outcome only]) and vascular anatomy that influences either the risk of bAVM hemorrhage ([4] bAVM nidus location and [5] bAVM venous drainage pattern) or the risk of intervention ([6] maximum bAVM nidus diameter). Covariates were entered...
simultaneously into the regression model. In a supplementary analysis, we derived a model to predict the occurrence of intervention (using age at presentation, receipt of a catheter angiogram, and sex) and adjusted the multivariable models of the primary and secondary outcomes for these propensity scores.

RA-SS used IBM SPSS Statistics (version 19.0), Stata (version 11.2), StatsDirect (version 2.7.8), and Confidence Interval Analysis software to calculate: parametric statistics for between-group comparisons when continuous data obeyed a normal distribution and non-parametric statistics when they did not; exact tests in the analysis of categorical data; and HRs with Cox regression analyses. All reported P values are two-sided (α=0.05).

RESULTS

Baseline characteristics

During 1999-2003 and 2006-2010, 213 adults were newly diagnosed with at least one definite unruptured bAVM, of whom 204 were eligible for analysis (Figure 1). 103 underwent intervention. 101 underwent conservative management (five of whom had a bleed during follow-up and subsequently underwent intervention). Adults receiving intervention were younger, more likely to present with seizure(s), more likely to have a catheter angiogram and less likely to have a maximum bAVM diameter >6cm (Table 1).
Conservative management

101 adults were managed conservatively, which involved usual care (e.g. pharmacological treatment of seizures) but no intervention. In this group, embolization was attempted but did not proceed in two adults (because of spontaneous bAVM obliteration 12 days after presentation in one adult and the demonstration of unsuitable vascular anatomy on superselective angiography in another) and three adults underwent intervention for a remote intracranial aneurysm, but the bAVM was not treated. A second bAVM spontaneously obliterated 2·4 years after presentation.

Intervention

103 adults received their first intervention after median 13 months (inter-quartile range [IQR] 7-19, range 0-97) following presentation (eFigure 1). Embolization was attempted but did not proceed because of unsuitable vascular anatomy in four adults (subsequently embolization was possible in one and three underwent stereotactic radiosurgery). Two-thirds received single-modality intervention and one-third received multi-modality intervention over median 12 months (eFigure 2 and eTable 1). 83 adults had catheter angiography and 14 had magnetic resonance angiography following their last intervention, demonstrating bAVM obliteration in 63% after single-modality and 71% following multi-modality intervention (eTable 1). Adults undergoing stereotactic radiosurgery had their most recent imaging study after mean 32±15 months following their most recent intervention.
Outcome after intervention or conservative management

We followed 204 adults with bAVM who were alive at presentation for a median of 6·9 years (IQR 4.0-11.0) and a total of 1,479 person-years (of 1,567 potential person-years; overall completeness 94%21). The median duration of follow-up was longer after intervention (9·4 years, IQR 5·0-11·9) than during conservative management (5·2 years, IQR 3·0-9·7; p=0·002) because three-quarters of the 41 deaths occurred during conservative management (Figure 1 and eFigure 3 and eFigure 4).

For the primary outcome, the proportional hazards assumption was met over the first four years of follow-up. During this time the rate of progression to the primary outcome was lower during conservative management than after intervention (36 vs. 39 events, 9.5 vs 9.8 per 100 person years, adjusted HR 0·59, 95% confidence interval [CI] 0·35-0·99; Table 2 and Figure 2), but rates were not different when subsequent time periods were analysed separately (4-8 years, 8 vs. 8 events, adjusted HR 1·07, 95% CI 0·37-3·16; 8-12 years, 5 vs. 1 event, adjusted HR 4·70, 95% CI 0·29-77·42). Over 12 years, the death rate was higher during conservative management than after intervention (31 vs. 10 events, 3.7 vs 1.1 per 100 person years, HR 3·64, 95% CI 1·78-7·43; eFigure 3). This was unrelated to bAVM or intervention (log-rank p=0·29) but attributable to deaths from other causes (log-rank p<0·001); these differences disappeared after age-adjustment (eTable 2).

For the secondary outcome, the proportional hazards assumption was met over 12 years of follow-up, during which time the rate of progression to the secondary outcome was lower during conservative management than after intervention (14 vs. 38 events, 1.6 vs 3.3 per 100 person years, adjusted HR 0·37, 95% CI 0·19-0·72; Table 2 and Figure 3), largely because of symptomatic strokes due to intervention (Figure 1), 7 of which occurred within 30 days of first intervention.
After these first events, there were 12 more secondary outcomes in the intervention group, and one during conservative management.

Sensitivity and supplementary analyses

In pre-specified sensitivity analyses, the association of conservative management with the primary outcome remained the same over four years after removing adults who experienced outcomes before bAVM intervention (34 vs. 39 events, 9.0 vs 9.8 per 100 person years, adjusted HR 0·58, 95% CI 0·34-0·99) or when the two adults who had intervention attempted but not given were re-allocated to the intervention group (34 vs. 41 events, 9.3 vs 10.0 per 100 person years, adjusted HR 0·53, 95% CI 0·32-0·90). The association with the secondary outcome was similar whether including pre-intervention clinical course in the conservative management group (18 vs. 39 events, 2.1 vs 3.4 per 100 person years, unadjusted HR 0·27, 95% CI 0·16-0·47), including pre-intervention clinical course in the intervention group (14 vs. 33 events, 1.5 vs 2.8 per 100 person years, adjusted HR 0·50, 95% CI 0·25-0·98),

We pre-specified a supplementary analysis of ARUBA's primary outcome (the composite event of death from any cause or symptomatic stroke). However, the proportional hazards assumption was violated (eFigure 5) precluding multivariable analysis, because of the excess of deaths of any cause in the conservative management group in our study (Figure 1 and eFigure 3).
A post hoc analysis restricted to adults who were OHS 0-1 at baseline did not change the association between conservative management and the primary outcome (12 vs. 24 events, 5.5 vs 9.0 per 100 person years, adjusted HR 0.42, 95% CI 0.20-0.89 over four years) or secondary outcome (7 vs. 20 events, 1.3 vs 2.5 per 100 person years, adjusted HR 0.35, 95% CI 0.14-0.87).

In post hoc analyses, we found differences between the two cohort epochs in some covariates. Therefore, we added a cohort epoch term to our multivariable models, which had sufficient outcomes to allow the addition of another covariate. The strength and statistical significance of the associations in our multivariable analyses of the primary and secondary outcomes (Table 2) did not change, but the 2006-2010 cohort was associated with faster progression to the secondary outcome (27 vs. 25 events, 4.6 vs 1.8 per 100 person years, adjusted HR 2.37, 95% CI 1.28-4.36).

Post hoc multivariable analyses also adjusted for scores modelled on propensity to intervention did not change the association between conservative management and the primary outcome (36 vs. 39 events, 9.5 vs 9.8 per 100 person years, adjusted HR 0.50, 95% CI 0.27-0.94; eTable 3) or secondary outcome (14 vs. 38 events, 1.6 vs 3.3 per 100 person years, adjusted HR 0.39, 95% CI 0.20-0.74; eTable 4).

DISCUSSION

In a prospective, population-based inception cohort study of adults with unruptured bAVM, we found that conservative management was associated with a lower rate of progression to sustained handicap or death of any cause over four years, and a lower risk of bAVM-related symptomatic stroke or death over 12 years, having adjusted for baseline imbalances and performed several sensitivity analyses.
One randomized controlled trial comparing conservative management with intervention for unruptured bAVMs (ARUBA) was published recently.\(^8,^9\) Non-randomized observational studies and randomized trials sometimes concur,\(^{26,27}\) and in this case the similarities support the generalizability of the results: treated participants were similar in age, sex, incidental mode of presentation, lobar bAVM nidus location, superficial venous drainage pattern, and Spetzler-Martin grades (Table 1), and they received multi-modality intervention with the same frequency (eTable 1).\(^9\) Furthermore, the association between conservative management and stroke or death related to bAVM or its intervention over 12 years in this observational study (adjusted HR 0.37, 95% CI 0.19-0.72) was similar to the effect of conservative management on stroke or death of any cause over six years in the ARUBA as-randomized analysis (HR 0.27, 95% CI 0.14-0.54).\(^9\) The similarity of the results of this observational study and ARUBA and the persistent difference between the outcome of conservative management and intervention during 12-year follow-up in our study support the superiority of conservative management to intervention for unruptured bAVMs, which may deter these patients and physicians from intervention.

The strengths of this study include: thorough case ascertainment\(^15;\) a population-based sampling frame to maximize external validity; a concurrent control group; sufficient time to allow the effects of multi-modality intervention and stereotactic radiosurgery to be complete by the end of follow-up; internal validity from using independent imaging review and outcome assessment with reference to published criteria; minimisation of bias by using outcomes that were rated and adjudicated independently of the doctors caring for these adults in clinical practice; and 94% completeness of the entire duration of follow-up for all adults. The clinical outcome and proportions of bAVM obliterated by intervention in Scotland appear generalizable, by being at least as good as reports in systematic reviews\(^6\) and the USA Nationwide Inpatient Sample.
Furthermore, the rate of hemorrhage from unruptured bAVMs (18%, 95% CI 11-30 after 12 years; Figure 3) was consistent with reported rates.1,2

This study also has several limitations. Our comparison of intervention and conservative management was not randomized, so selection bias led to adults undergoing intervention being younger, presenting more often with seizure(s), and having smaller AVM nidus diameters (Table 1). Confounding by indication may affect our results, but the bAVM intervention group appeared to have favourable prognostic factors, and adjustment for propensity to intervention did not change our findings. Both the robustness of our findings in sensitivity analyses, as well as consistency between our findings and ARUBA9 are reassuring. The primary outcome did not include the baseline measurement of handicap (and therefore allowed recovery from initial presentation) and crucially it allowed for recovery from the known early complications after intervention by requiring handicap to be sustained for at least two successive years. The primary outcome was difficult to interpret beyond four years, because of the high frequency of bAVM-unrelated deaths in the conservative management group, which was attributable to the imbalance in age between the groups at baseline. Long-term follow-up in both this study as well as the ARUBA trial is needed to establish whether the superiority of conservative management will persist or change.

Conclusions

Among adults diagnosed with unruptured bAVM, the use of conservative management compared with intervention was associated with better clinical outcomes over 4 years. However, longer follow-up is required to understand whether this association is persistent.
CONTRIBUTORS

RA-SS and CPW designed the study, supported by the SAIVMs Steering Committee. RA-SS, JvB, CBJ, TW, CJW, and ZS collected data. RJS, JdP, and PMW assessed brain imaging. RA-SS checked, analysed and interpreted the data according to a statistical analysis plan developed and approved by the SAIVMs Steering Committee. RA-SS drafted the paper, and all co-authors reviewed the final version.

SAIVMs steering committee

R Al-Shahi Salman (NHS Lothian), S Baird (NHS National Services Scotland), JJ Bhattacharya (NHS Greater Glasgow and Clyde), CE Counsell (NHS Grampian), EJ St George (NHS Greater Glasgow and Clyde), PM White (Newcastle Hospitals NHS Foundation Trust), V Ritchie (retired), RC Roberts (retired), RJ Sellar (retired), and CP Warlow (retired).

SAIVMs COLLABORATORS

Crosshouse Hospital, Kilmarnock, UK—Neil Corrigan, Patrick Cruish, Mike Dean, Elspeth Lindsay,
George McLaughlin, Morag McMillan, David Rawlings. Cumberland Infirmary, Carlisle, UK—George
Athey, John Edge, Rachel England, Farshid Fallahi, John Jackson, Ian Khechane, Robert McNeill,
Paul Jennings. Dr Gray’s Hospital, Elgin, UK—John Addison, Sandy Forbat, Ken Brown. Dumfries
and Galloway Royal Infirmary, Dumfries, UK—Margaret Aird, David Hill, Paul Kelly, Uwe
Spelmeyer. Edinburgh Royal Infirmary, Edinburgh, UK—Andrew Coull, Tom Fitzgerald, Simon Hart,
Graham McKillop, Gillian Mead, Dilip Patel. Edinburgh University Medical School, Edinburgh, UK—
Juan Carlos Arango, Anthony Busuttil, Gerhard Kernbach-Wighton. Falkirk and District Royal
Infirmary, Falkirk, UK—Josephine Barrie, Emma Beveridge, Linda Buchanan, Raj Burgul, Kumar
Jawad, Robert Johnstone, Christian Neumann, Louise Stewart. Gartnavel General Hospital,
Glasgow, UK—Desmond Alcorn, Ramsay Vallance. Glasgow Royal Infirmary, Glasgow, UK—John
Burns, Peter Langhorne, Gordon Lowe, Allan Reid, Giles Roditi, David Stott, Jacqueline Taylor,
Fiona Wright. Hairmyres Hospital, East Kilbride, UK—Jenny Ballantyne, Donna Edwards, Alastair
Forrester, Fiona Gardner, Gillian Harold, Fong Lau, Brian MacInnes, Sarah Millar, Frank Mohsen,
Clifford Murch, Brendan Martin, Brigitte Yip. Institute of Neurological Sciences, Glasgow, UK—
Likhith Alankandy, Tracey Baird, John Ballantyne, Philip Barlow, Maziar Behebani, Jo Bhattacharya,
Ian Bone, John Brecknell, Katie Brennan, Jennifer Brown, Anne Burke, Tiernan Byrnes, Peter
Connick, Sarah Cooper, Krishna Dani, David Doyle, Rod Duncan, Laurence Dunn, William Durward,
Maria Farrugia, Sarah Finlayson, Peter Foley, Paul French, Cormack Gavin, George Gorrie, Kamal
Goyal, David Graham, John Greene, Donald Grosset, Donald Hadley, Oliver Jack, Sarah Jenkins,
Robin Johnston, Jay Jay, Shabin Joshi, Giridhar Kalamangalam, Andrew Kay, David Kean, Peter
Kennedy, Abi Kumar, John Paul Leach, Imran Liaquat, Kenneth Lindsay, Patricia Littlechild, Arup
Malik, Cameron Mann, Vicky Marshall, Calan Mathieson, Paul McGeoch, Aileen McGonigal,
Richard Metcalf, Sarah Miller, Manoj Mohan, Ian Morrison, Keith Muir, Edward Newman, Clair
Nicholson, James Nicoll, Colin O’Leary, Mary Murphy, James Overell, Vakis Papanastassiou,
Richard Petty, Alan Ramsay, Bhaskara Rao, Saif Razvi, Susan Robinson, Aline Russell, Raju Sangra,
Celestine Santosh, Pushkar Shah, Aslam Siddiqui, Neil Simms, Phil Simpson, Stuart Sloss, Ursula
Schulz, Edward Jerome St George, William Taylor, Evelyn Teasdale, Graeme Teasdale, Rachel
Thomas, Alok Tyagi, Leighton Walker, Donal Walsh, Alistair Weir, Stewart Webb, Mark White,
Hugh Willison. *Inverclyde Royal Hospital, Greenock, UK*—Frank Kelly, Patrick Walsh. *Lorn and
Islands District General Hospital, Oban, UK*—Hasan Fattah, Fiona Johnson. *Monkland District
General, Airdrie, UK*—Ken Wallers. *Newcastle General Hospital, Newcastle-upon-Tyne, UK*—Daniel
Birchall, Anil Gholkar, Vijay Jayakrishnan, Dipayan Mitra, Calvin Soh, Keng Tay. *Ninewells Hospital,
Dundee, UK*—Nazaar Alsanjari, Eric Ballantyne, Emer Campbell, Frank Carey, Duncan Davidson,
Zuzana Dean, Alex Doney, Rahim Elashall, Sam Eljamel, Craig Heath, Graeme Houston, Avinash
Kanodia, Alex Kivjazovas, Ronald MacWalter, Gavin Main, David Mowle, Jonathan O’Riordan, John
Parratt, Jayne Pritchard, Richard Roberts, Gillian Stewart, Robert Swingler, Vovo Szepielow, John
Johnston, Ian Lightbody, Richard Murray. *Queen Margaret Hospital, Dunfermline, UK*—Myles
Connor, Hamish Ireland, Nicola Chapman, John McKenzie, Sue Pound. *Raigmore Hospital,
Inverness, UK*—George Aitken, Paul Findlay, Patrick Fox, David Goff, Peter Henry, Ann Macleod,
John Miller, David Nichols, Helen Shannon, Kate Taylor, Alistair Todd, Frank Williams. *Royal
Alexandra Hospital, Paisley, UK*—Lindsay Erwin, Eleanor Murray, Alan Wallace. *St John’s Hospital,
Livingston, UK*—Sarah Chambers, Donald Farquhar, Katherine Jackson, Ian Parker, Scott Ramsay,
John Wilson. *Stirling Royal Infirmary, Stirling, UK*—Malcolm Macleod, Susan McCallan, Peter
McDermott, Robert Prempeh. *Stobhill NHS Trust, Glasgow, UK*—Thomas Bryant, Fiona Bryden,
Pamela Fraser, Helen Griffiths, Christine McAlpine, Alastair McCafferty, Ian Mcleod, John Shand,
Rhona Stevens. *Stracathro Hospital, Brechin, UK*—Ian Gillanders, John Tainsh. *Victoria Hospital,
Kirkcaldy, UK*—Susan Bahnsen, Caroline Clark, Vere Cvoro, Bill Reid, Martin Zeidler. *Victoria
Infirmary, Glasgow, UK*—John Calder, Andrew Downie, Mike Gronski, Jean Lauder, Ian
McLaughlin, Jan Potter, Margaret Roberts. *Western General Hospital, Edinburgh, UK*—Rustam Al-

Shahi Salman, Rebecca Aylward, Chandra Balasubramaniyam, Jeanne Bell, Peter Bodkin, Paul

Brennan, Chris Butler, Gurjit Chohan, Helen Cook, Don Collie, Roger Cull, Richard Davenport,

Martin Dennis, Chris Derry, Fergus Doubal, Rahul Dubey, Sara Erridge, Andrew Farrall, Mike

Fitzpatrick, Ioannis Fouyas, Rod Gibson, Robin Grant, Anna Gregor, Gordon Gubitz, Julie Hall,

Peter Hand, Colm Henry, Fiona Hughes, Brian Innes, James Ironside, Susan Kealey, Sarah Keir,

Andrew Kelso, Peter Keston, Richard Knight, Joseph Kwan, Marco Lee, Richard Lindley, Christian

Lueck, Greg Moran, Colin Mumford, Katy Murray, Lynn Myles, Mary Porteous, Gillian Potter,

Jerard Ross, Thomas Russell, Peter Sandercock, Robin Sellar, Colin Smith, Patrick Statham, James

Steers, Jon Stone, Cathie Sudlow, David Summers, Joanna Wardlaw, Charles Warlow, Nick Weir,

Belinda Weller, Phil White, Will Whiteley, Ian Whittle, Bob Will, Anna Williams, Edith Wood,

Wendy Young, Adam Zeman. *Western Infirmary, Glasgow, UK*—Martin Brodie, Michael Cowan, Ed

Kalkman, Kevin Kelly, Gordon McInnes, Nigel McMillan, John Reid, Peter Semple, Matthew

Walters. *Western Isles Hospital, Stornoway, UK*—Ian Riach. *Wishaw General Hospital, Wishaw,

UK*—Desmond Alcorn, Marie Callaghan, Mohammed El-Sayed, Mustafa Fleet, Barbara

Macpherson, Susan Reid, John Roberts. *Woodend General Hospital, Aberdeen, UK*—Steven

Hamilton, Francis Smith.
CONFLICTS OF INTEREST

Professor White reports grants and personal fees from Covidien during the conduct of the study. All other authors have nothing to disclose.

ACKNOWLEDGEMENTS

This study was supported by the Medical Research Council (G84/5176, G108/613, and G1002605); the Chief Scientist Office of the Scottish Government (K/MRS/50/C2704 and CZB/4/35); the Stroke Association (TSA04/01); the Netherlands Organisation for Scientific Research; and the Netherlands Heart Foundation (2002B138). RA-SS had full access to all of the data in the study, conducted the analysis, takes responsibility for the analysis, and takes responsibility for the integrity of the data and the accuracy of the data analysis. The study sponsors had no role in study design and conduct of the study; in the collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.
REFERENCES

(13) Starke RM, Komotar RJ, Hwang BY, Fischer LE, Garrett MC, Otten ML et al. Treatment
guidelines for cerebral arteriovenous malformation microsurgery. British Journal of

Prospective, Population-Based Detection of Intracranial Vascular Malformations in Adults:
The Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke 2003; 34(5):1163-
1169.

Scottish Intracranial Vascular Malformation Study (SIVMS): Evaluation of Methods, ICD-10
Coding, and Potential Sources of Bias in a Prospective, Population-Based Cohort. Stroke

(16) Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations.

(17) Joint writing group of the Technology Assessment Committee (American Society of
Interventional and Therapeutic Neuroradiology AAoNSaCoNSAAoN. Reporting terminology
for brain arteriovenous malformation clinical and radiographic features for use in clinical

(18) Jayaraman MV, Meyers PM, Derdeyn CP, Fraser JF, Hirsch JA, Hussain MS et al. Reporting
standards for angiographic evaluation and endovascular treatment of cerebral

(19) Bamford JM, Sandercock PA, Warlow CP, Slattery J. Interobserver agreement for the

(20) Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number
of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 1996;
49(12):1373-1379.

(21) Clark TG, Altman DG, De Stavola BL. Quantification of the completeness of follow-up.

(22) Pocock SJ, Clayton TC, Altman DG. Survival plots of time-to-event outcomes in clinical trials:

(23) Bradburn MJ, Clark TG, Love SB, Altman DG. Survival analysis Part III: multivariate data
analysis - choosing a model and assessing its adequacy and fit. Br J Cancer 2003; 89(4):605-
611.

(24) Josephson CB, Bhattacharya JJ, Counsell CE, Papanastassiou V, Ritchie V, Roberts R et al.
Seizure risk with AVM treatment or conservative management: prospective, population-

(25) Levesque LE, Hanley JA, Kezouh A, Suissa S. Problem of immortal time bias in cohort
studies: example using statins for preventing progression of diabetes. BMJ 2010;
340:b5087.

FIGURE LEGENDS

FIGURE 1 – Flowchart of included participants.
bAVM = arteriovenous malformation
* Oxford Handicap Scale scores were not available for three patients. ¶ Five patients experiencing bAVM hemorrhage during conservative management subsequently had intervention, but remained in the conservative management group for analysis of the primary outcome.

FIGURE 2 – Progression to the primary outcome (first occurrence after inception of death of any cause or handicap [Oxford Handicap Scale Score 2-5] sustained for two or more successive years) during 12 years of prospective follow-up.
Error bars represent the 95% confidence intervals of the cumulative proportions at four and 12 years after inception.

FIGURE 3 – Progression to the secondary outcome (first occurrence after inception of a non-fatal intracranial hemorrhage, cerebral infarct, or persistent/progressive non-hemorrhagic focal neurological deficit, or death, due to a brain arteriovenous malformation [bAVM] or intervention complication) during 12 years of prospective follow-up.
Error bars represent the 95% confidence intervals of the cumulative proportions at four and 12 years after inception.
TABLE 1 – Baseline characteristics of adults with a definite diagnosis of an unruptured brain arteriovenous malformation (bAVM).

<table>
<thead>
<tr>
<th></th>
<th>Conservative management (n=101)</th>
<th>Intervention (n=103)</th>
<th>Significance (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at inception (mean ± SD), years</td>
<td>53 ± 16</td>
<td>41 ± 13</td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>39 (39%)</td>
<td>44 (43%)</td>
<td>0.551</td>
</tr>
<tr>
<td>Mode of presentation</td>
<td></td>
<td></td>
<td>0.009</td>
</tr>
<tr>
<td>Incidental</td>
<td>61 (60%)</td>
<td>40 (39%)</td>
<td></td>
</tr>
<tr>
<td>Seizure(s)</td>
<td>33 (33%)</td>
<td>52 (50%)</td>
<td></td>
</tr>
<tr>
<td>First seizure</td>
<td>15</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Epilepsy</td>
<td>18</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Focal neurological deficit</td>
<td>7 (7%)</td>
<td>11 (11%)</td>
<td></td>
</tr>
<tr>
<td>Presentation Oxford Handicap Scale 0-1</td>
<td>61 (60%)</td>
<td>69 (67%)</td>
<td>0.097</td>
</tr>
<tr>
<td>bAVM nidus location</td>
<td></td>
<td></td>
<td>0.404</td>
</tr>
<tr>
<td>Brainstem</td>
<td>3 (3%)</td>
<td>1 (1%)</td>
<td></td>
</tr>
<tr>
<td>Cerebellum</td>
<td>1 (1%)</td>
<td>2 (2%)</td>
<td></td>
</tr>
<tr>
<td>Deep</td>
<td>3 (3%)</td>
<td>7 (7%)</td>
<td></td>
</tr>
<tr>
<td>Lobar</td>
<td>94 (93%)</td>
<td>93 (90%)</td>
<td></td>
</tr>
<tr>
<td>Eloquent bAVM nidus location</td>
<td>50 (50%)</td>
<td>54 (52%)</td>
<td>0.676</td>
</tr>
<tr>
<td>Maximum bAVM nidus diameter (n=182)</td>
<td></td>
<td></td>
<td>0.012</td>
</tr>
<tr>
<td><3cm</td>
<td>45 (51%)</td>
<td>50 (54%)</td>
<td></td>
</tr>
<tr>
<td>3-6cm</td>
<td>36 (40%)</td>
<td>43 (46%)</td>
<td></td>
</tr>
<tr>
<td>>6cm</td>
<td>8 (9%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Catheter angiogram done</td>
<td>46 (46%)</td>
<td>96 (93%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Venous drainage pattern (n=142)</td>
<td></td>
<td></td>
<td>0.618</td>
</tr>
<tr>
<td>Superficial</td>
<td>30 (65%)</td>
<td>69 (72%)</td>
<td></td>
</tr>
<tr>
<td>Both deep and superficial</td>
<td>13 (28%)</td>
<td>20 (21%)</td>
<td></td>
</tr>
<tr>
<td>Exclusively deep</td>
<td>3 (7%)</td>
<td>7 (7%)</td>
<td></td>
</tr>
<tr>
<td>Spetzler-Martin Grade16 (n=142)</td>
<td></td>
<td></td>
<td>0.212</td>
</tr>
<tr>
<td>I</td>
<td>9 (20%)</td>
<td>21 (22%)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>15 (33%)</td>
<td>36 (38%)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>12 (26%)</td>
<td>29 (30%)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>8 (17%)</td>
<td>10 (10%)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2 (4%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Co-existing intracranial aneurysms</td>
<td></td>
<td></td>
<td>0.236</td>
</tr>
<tr>
<td>Associated only</td>
<td>20 (20%)</td>
<td>19 (18%)</td>
<td></td>
</tr>
<tr>
<td>Remote and associated</td>
<td>1 (1%)</td>
<td>6 (6%)</td>
<td></td>
</tr>
<tr>
<td>Remote only</td>
<td>4 (4%)</td>
<td>2 (2%)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2 – Bivariate and multivariable Cox proportional hazards analyses of the first occurrence of a primary or secondary outcome.

<table>
<thead>
<tr>
<th>Cases (n)</th>
<th>Outcomes (n)</th>
<th>Hazard ratio (95% confidence interval)</th>
<th>Cases (n)</th>
<th>Outcomes (n)</th>
<th>Hazard ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unadjusted bivariate</td>
<td>Multivariable adjusted*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative management</td>
<td>98</td>
<td>36</td>
<td>0.82 (0.52-1.29)</td>
<td>0.59 (0.35-0.99)</td>
<td>101</td>
</tr>
<tr>
<td>Intervention (referent)</td>
<td>103</td>
<td>39</td>
<td></td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>Age at inception (per year increase)</td>
<td>201</td>
<td>75</td>
<td>1.01 (0.99-1.03)</td>
<td>1.01 (0.99-1.03)</td>
<td>204</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seizure(s)</td>
<td>85</td>
<td>33</td>
<td>1.04 (0.66-1.65)</td>
<td>0.74 (0.43-1.29)</td>
<td>85</td>
</tr>
<tr>
<td>Other (referent)</td>
<td>116</td>
<td>42</td>
<td></td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>Presentation OHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>74</td>
<td>39</td>
<td>2.23 (1.41-3.50)</td>
<td>2.48 (1.49-4.12)</td>
<td>-</td>
</tr>
<tr>
<td>0-1 (referent)</td>
<td>127</td>
<td>36</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>bAVM location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep</td>
<td>10</td>
<td>3</td>
<td>0.75 (0.24-2.39)</td>
<td>0.73 (0.23-2.39)</td>
<td>10</td>
</tr>
<tr>
<td>Other (referent)</td>
<td>191</td>
<td>72</td>
<td></td>
<td></td>
<td>194</td>
</tr>
</tbody>
</table>

$^\circ$ first occurrence during four years of follow-up after inception of death or handicap [Oxford Handicap Scale Score (OHS) 2-5] sustained for two or more successive years; $^\int$ first occurrence during 12 years of follow-up after inception of a non-fatal intracranial hemorrhage, cerebral infarct, or persistent / progressive non-hemorrhagic focal neurological deficit, or death, due to a brain arteriovenous malformation [bAVM] or intervention complication; * adjusted for intervention, age at inception, mode of presentation, bAVM location, and OHS at presentation; $^\|$ adjusted for intervention, age at inception, mode of presentation, and bAVM location.
FIGURE 1 – Flowchart of included participants.

bAVM = arteriovenous malformation

* Oxford Handicap Scale scores were not available for three patients. ¶ Five patients experiencing bAVM hemorrhage during conservative management subsequently had intervention, but remained in the conservative management group for analysis of the primary outcome.
FIGURE 2 – Progression to the primary outcome (first occurrence after inception of death of any cause or handicap [Oxford Handicap Scale Score 2-5] sustained for two or more successive years) during 12 years of prospective follow-up.

Progression to the primary outcome

Cumulative proportion progressing to death of any cause or handicap sustained for 22 successive years

Prospective follow-up (years)

Log Rank (Mantel-Cox) chi-square=0.01, p=0.91

Conservative management

Intervention

Adults at risk (events in preceding year)

Intervention: 103 72 (30) 60 (6) 53 (1) 45 (2) 34 (4) 31 (2) 27 (0) 23 (1) 18 (3) 11 (2) 9 (0) 7 (0)

Conservative: 101 90 (8) 71 (18) 56 (7) 44 (3) 35 (1) 28 (1) 23 (3) 21 (1) 18 (3) 11 (2) 9 (0) 6 (0)
FIGURE 3 – Progression to the secondary outcome (first occurrence after inception of a non-fatal intracranial hemorrhage, cerebral infarct, or persistent/progressive non-hemorrhagic focal neurological deficit, or death, due to a brain arteriovenous malformation [bAVM] or intervention complication) during 12 years of prospective follow-up.

Progression to the secondary outcome

Log Rank (Mantel-Cox) chi-square=15.45, p<0.001

Adults at risk (events in preceding year)

<table>
<thead>
<tr>
<th>Prospective follow-up (years)</th>
<th>Intervention</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>103 (28)</td>
<td>101 (1)</td>
</tr>
<tr>
<td>1</td>
<td>73 (6)</td>
<td>96 (1)</td>
</tr>
<tr>
<td>2</td>
<td>64 (6)</td>
<td>86 (6)</td>
</tr>
<tr>
<td>3</td>
<td>57 (1)</td>
<td>73 (3)</td>
</tr>
<tr>
<td>4</td>
<td>50 (1)</td>
<td>61 (1)</td>
</tr>
<tr>
<td>5</td>
<td>45 (1)</td>
<td>53 (1)</td>
</tr>
<tr>
<td>6</td>
<td>41 (0)</td>
<td>42 (0)</td>
</tr>
<tr>
<td>7</td>
<td>37 (1)</td>
<td>36 (1)</td>
</tr>
<tr>
<td>8</td>
<td>34 (0)</td>
<td>33 (0)</td>
</tr>
<tr>
<td>9</td>
<td>30 (0)</td>
<td>28 (1)</td>
</tr>
<tr>
<td>10</td>
<td>22 (0)</td>
<td>21 (0)</td>
</tr>
<tr>
<td>11</td>
<td>18 (0)</td>
<td>15 (0)</td>
</tr>
<tr>
<td>12</td>
<td>8 (0)</td>
<td>11 (0)</td>
</tr>
</tbody>
</table>
ONLINE-ONLY SUPPLEMENT

eFIGURE 1 – Time to first intervention for an unruptured brain arteriovenous malformation or associated arterial aneurysm after initial presentation among the 103 adults in the intervention group

eFIGURE 2 – Time between first and last intervention for an unruptured brain arteriovenous malformation or associated arterial aneurysm among the 103 adults in the intervention group

eTABLE 1 – Type of intervention and extent of angiographic obliteration among the 103 adults in the intervention group

eFIGURE 3 – Progression to death of any cause among the 204 adults with unruptured bAVM during 12 years of prospective follow-up

eTABLE 2 – Bivariate and multivariable Cox proportional hazards analyses of the first occurrence of death of any cause among the 204 adults with unruptured bAVM during 12 years of prospective follow-up

eFIGURE 4 – Stacked bar chart of the proportions of the 204 adults with unruptured bAVM who were followed-up in each year on the Oxford Handicap Scale, stratified by treatment group for comparison

eFIGURE 5 – Progression to death from any cause or symptomatic stroke among the 204 adults with unruptured bAVM during 12 years of prospective follow-up

eTABLE 3 – Multivariable Cox proportional hazards analysis of the first occurrence of the primary outcome during four years of follow-up among the 204 adults with unruptured bAVM, adjusted for propensity score

eTABLE 4 – Multivariable Cox proportional hazards analysis of the first occurrence of the secondary outcome during 12 years of follow-up among the 204 adults with unruptured bAVM, adjusted for propensity score
eFIGURE 1 – Time to first intervention for an unruptured brain arteriovenous malformation or associated arterial aneurysm after initial presentation among the 103 adults in the intervention group. Each bin includes values greater than or equal to the lower limit and less than the upper limit.
eFIGURE 2 – Time between first and last intervention for an unruptured brain arteriovenous malformation or associated arterial aneurysm among the 103 adults in the intervention group. Each bin includes values greater than or equal to the lower limit and less than the upper limit.
eTABLE 1 – Type of intervention and extent of angiographic obliteration among the 103 adults in the intervention group.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>n</th>
<th>Completely obliterated</th>
<th>Partially obliterated</th>
<th>No follow-up imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single modality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stereotactic radiosurgery</td>
<td>28</td>
<td>18 (64%)</td>
<td>8 (29%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Endovascular embolisation</td>
<td>22</td>
<td>10 (45%)</td>
<td>10 (45%)</td>
<td>2 (10%)</td>
</tr>
<tr>
<td>Microsurgical excision</td>
<td>18</td>
<td>15 (83%)</td>
<td>1 (6%)</td>
<td>2 (11%)</td>
</tr>
<tr>
<td>Sub-total</td>
<td>68</td>
<td>43 (63%)</td>
<td>19 (28%)</td>
<td>6 (9%)</td>
</tr>
<tr>
<td>Multimodality **</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endovascular embolisation and stereotactic radiosurgery</td>
<td>20</td>
<td>11 (55%)</td>
<td>9 (45%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Endovascular embolisation and microsurgical excision</td>
<td>12</td>
<td>12 (100%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Stereotactic radiosurgery and microsurgical excision</td>
<td>2</td>
<td>2 (100%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Endovascular embolisation, microsurgical excision, and stereotactic radiosurgery</td>
<td>1</td>
<td>0 (0%)</td>
<td>1 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Sub-total</td>
<td>35</td>
<td>25 (71%)</td>
<td>10 (29%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

** p<0.01 comparing the proportion completely obliterated in four multimodality approaches
eFIGURE 3 – Progression to death of any cause among the 204 adults with unruptured bAVM during 12 years of prospective follow-up.

Conservative management

Intervention

Log Rank (Mantel-Cox) chi-square=14.39, p<0.001

Prospective follow-up (years)

Cumulative proportion dying

Adults at risk (events in preceding year)

Conservative 101 96 (4) 90 (5) 86 (1) 78 (6) 66 (1) 57 (3) 45 (1) 39 (2) 35 (2) 31 (4) 24 (3) 15 (0) 11 (0)
Intervention 103 99 (3) 94 (1) 82 (0) 72 (0) 63 (2) 59 (1) 53 (2) 50 (1) 43 (0) 32 (0) 26 (0) 12 (0)
eTABLE 2 – Bivariate and multivariable Cox proportional hazards analyses of the first occurrence of death of any cause among the 204 adults with unruptured bAVM during 12 years of prospective follow-up.

<table>
<thead>
<tr>
<th></th>
<th>Cases (n)</th>
<th>Outcomes (n)</th>
<th>Hazard ratio (95% confidence interval)</th>
<th>Unadjusted bivariate</th>
<th>Multivariable adjusted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative management</td>
<td>101</td>
<td>31</td>
<td>3.64 (1.78-7.43)</td>
<td>1.62 (0.72-3.65)</td>
<td></td>
</tr>
<tr>
<td>Intervention (referent)</td>
<td>103</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at inception (per year increase)</td>
<td>204</td>
<td>41</td>
<td>1.07 (1.04-1.09)</td>
<td>1.04 (1.02-1.07)</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seizure(s)</td>
<td>85</td>
<td>11</td>
<td>0.41 (0.21-0.82)</td>
<td>0.45 (0.20-0.98)</td>
<td></td>
</tr>
<tr>
<td>Other (referent)</td>
<td>119</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation OHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>74</td>
<td>23</td>
<td>3.30 (1.76-6.16)</td>
<td>3.50 (1.77-6.89)</td>
<td></td>
</tr>
<tr>
<td>0-1 (referent)</td>
<td>130</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* adjusted for intervention, age at inception, mode of presentation, and OHS at presentation.
eFIGURE 4 – Stacked bar chart of the proportions of the 204 adults with unruptured bAVM who were followed-up in each year on the Oxford Handicap Scale, stratified by treatment group for comparison. Deaths are illustrated cumulatively so the annual case fatality rate is over-estimated.
FIGURE 5 – Progression to death from any cause or symptomatic stroke among the 204 adults with unruptured bAVM during 12 years of prospective follow-up.

Log Rank (Mantel-Cox) chi-square=0.20, p=0.66
eTABLE 3 – Multivariable Cox proportional hazards analysis of the first occurrence of the primary outcome during four years of follow-up among the 204 adults with unruptured bAVM, adjusted for propensity score.

<table>
<thead>
<tr>
<th>Primary outcome (over four years), adjusted for propensity score</th>
<th>Cases (n)</th>
<th>Outcomes (n)</th>
<th>Hazard ratio (95% confidence interval)</th>
<th>Multivariable adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative management</td>
<td>98</td>
<td>36</td>
<td>0.50 (0.27-0.94)</td>
<td></td>
</tr>
<tr>
<td>Intervention (referent)</td>
<td>103</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (per year increase)</td>
<td>201</td>
<td>75</td>
<td>1.01 (0.99-1.03)</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seizure(s)</td>
<td>85</td>
<td>33</td>
<td>0.69 (0.39-1.23)</td>
<td></td>
</tr>
<tr>
<td>Other (referent)</td>
<td>116</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bAVM location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep</td>
<td>10</td>
<td>3</td>
<td>0.73 (0.22-2.41)</td>
<td></td>
</tr>
<tr>
<td>Other (referent)</td>
<td>191</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation OHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>74</td>
<td>39</td>
<td>2.48 (1.47-4.19)</td>
<td></td>
</tr>
<tr>
<td>0-1 (referent)</td>
<td>127</td>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
eTABLE 4 – Multivariable Cox proportional hazards analysis of the first occurrence of the secondary outcome during 12 years of follow-up among the 204 adults with unruptured bAVM, adjusted for propensity score.

<table>
<thead>
<tr>
<th>Secondary outcome (over 12 years), adjusted for propensity score</th>
<th>Cases (n)</th>
<th>Outcomes (n)</th>
<th>Hazard ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative management</td>
<td>101</td>
<td>14</td>
<td>0·39 (0·20-0·74)</td>
</tr>
<tr>
<td>Intervention (referent)</td>
<td>103</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Age (per year increase)</td>
<td>204</td>
<td>52</td>
<td>0·99 (0·97-1·01)</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seizure(s)</td>
<td>85</td>
<td>26</td>
<td>1·15 (0·65-2·04)</td>
</tr>
<tr>
<td>Other (referent)</td>
<td>119</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>bAVM location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep</td>
<td>10</td>
<td>5</td>
<td>1·69 (0·65-2·04)</td>
</tr>
<tr>
<td>Other (referent)</td>
<td>194</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>