clinical and preclinical) and skills needed to perform adequately during the following 18 month internship that is required to obtain the medical license. CP contents, results, and student perceptions from the first 3 occasions are presented.

Patients (or Materials) and Methods: The examination takes place in the last semester of the 5.5-year training program. The 6 stations are equally weighted in the total result. The students can pass the exam if they fail at 1 station, as long as their average score is sufficient. The CP station has consisted of a computer-presented patient case with questions, aimed at assessing prescribing skills and has also included preclinical aspects. Students have been allowed to use the Internet to search for information but not to interact with other persons. The cases so far have included the evaluation of possible side effects in an elderly patient with polypharmacy admitted after falling, drug prescribing to a pregnant woman with a urinary tract infection and migraine, and the reasoning about terminating or continuing treatment. Students have been allowed to use the Internet to search the documentation of therapeutic information, but doctors did not feel more informed about the treatment.

Conclusion: Structuring the therapeutic part of the MR improves the documentation of therapeutic information, but doctors did not feel more informed about the treatment.

Disclosure of Interest: None declared.

OC009—AN ASSESSMENT OF THE ACCURACY OF HORIZON SCANNING PREDICTIONS OF MEDICINE USE IN THE SCOTTISH NATIONAL HEALTH SERVICE

M. Bennie1; J. Dear2; E. Dunlop Corcoran3; S. Hems3; S. McTaggart3; R. Newham1; and C. Waugh1

1Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow; 2Edinburgh University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute; and 3Information Services Division, NHS National Services Scotland, Edinburgh, United Kingdom

Introduction: The Scottish Medicines Consortium (SMC) provides advice about the clinical and cost-effectiveness of newly licensed medicines to the National Health Service (NHS) in Scotland, and since 2005, SMC has also provided early intelligence on medicines still in development through publication of “Forward Look” reports. Forward Look predictions are helpful in supporting resource planning by NHS Boards, but there are challenges in accurately estimating the uptake of a medicine that is still in development. This study examined how actual medicine use compared with predictions provided in Forward Look Reports and SMC advice.

Patients (or Materials) and Methods: Twenty-eight medicines were selected in line with specified criteria. Data on the predicted uptake of these medicines at year 1 were extracted from Forward Look reports and SMC advice and compared with actual medicine use data from national primary and secondary care datasets. The data were summarized in medicine profiles and reviewed by clinicians to identify factors that may have impacted on the accuracy of predictions provided in Forward Look reports and SMC advice.

Results: Of 28 medicines selected for evaluation, the actual acquisition cost per patient per annum was consistent with Forward Look predictions for 11 medicines, higher for 14 medicines, and lower for 3 medicines. Of 22 medicines in the sample that were accepted for use or restricted use by SMC, the actual uptake at year 1 was consistent with Forward Look predictions for 4 medicines and with predictions in SMC advice for 3 medicines. Forward Look was more likely to overestimate the uptake than the SMC advice. Review of the medicine profiles identified 7 factors that may explain the variation between predicted and actual medicines uptake.

- SMC “not recommended” advice
- Accuracy of the predicted acquisition cost and number of patients (uptake being the product of these)
- Availability of alternative treatment
- Comparative costs and service implications

Disclosure of Interest: None declared.

OC008—THE EFFECT OF A STRUCTURED MEDICAL RECORD ON THE RECORDING OF THERAPEUTIC INFORMATION AND COMMUNICATION BETWEEN DOCTORS

R. Van Unen1,2,3; J. Tichelaar1,2; M. Richir1,2; and T. de Vries1,2

1RECIPE(Research and Expertise Center In Pharmacotherapy Education); and 2Department of Internal Medicine, Section Clinical Pharmacology and Pharmacotherapy, VU University Medical Center, Amsterdam, the Netherlands

Introduction: In contrast to the diagnostic part of the medical record (MR), the therapeutic section of the MR is currently unstructured and does not provide guidelines on which items of (pharmacoe) therapy are essential to note in the MR. The omission of this information could result in prescribing errors and miscommunication between doctors. A previous study showed that both junior doctors and clinical consultants believe it is important to note extensive information in the MR about the selected (pharmacoe) therapy. This study investigated the effect of a structured MR on the completeness of therapeutic information in the MR and the extent to which doctors felt informed about the treatment (as an indicator of communication between doctors).

Patients (or Materials) and Methods: Fifteen junior doctors working in the outpatient department of internal medicine in 7 Dutch teaching hospitals recorded therapeutic information for 2 weeks in regular, unstructured MRs. Subsequently after receiving a short training, they had to record their therapeutic information for 4 weeks in a structured MR. The structure contained 21 therapeutic items that should be recorded. The recording of these therapeutic items was then evaluated in 223 unstructured MRs and 197 structured MRs. After this evaluation, independent clinical consultants in internal medicine were asked to score, on a 5-point scale, the extent to which they felt informed about the treatment.

Results: Seven of the 21 (33%) therapeutic items were recorded in significantly (**P < 0.05**) greater detail in the structured MRs. Clinical consultants did not feel significantly more informed about treatment (score 3.9 with unstructured MRs and 4.0 with structured MRs; **P = 0.25**).
OC011—PATENTED DRUG EXTENSION STRATEGIES ON HEALTH CARE SPENDING: A COST-EVALUATION ANALYSIS

N. Vernaz; G. Haller; F. Girardin; B. Huttner; C. Combescure; P. Dayer; D. Muscionico; J.-L. Salomon; and P. Bonnabry

1Pharmacy, Geneva University Hospitals and School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva University Hospitals; 2Department of Anesthesiology, Pharmacology, Intensive Care, Division of Clinical Epidemiology, Department of Epidemiology & Preventive Medicine, Health Services Management and Research Unit, University of Geneva, Geneva University Hospitals, Monash University; 3Psychopharmacology Unit, Service of Clinical Pharmacy and Toxicology, Geneva University Hospitals; 4Infection Control Program, Geneva University Hospitals and Faculty of Medicine; 5CRC & Division of Clinical Epidemiology, Department of Health and Community Medicine, University of Geneva, Geneva University Hospitals; 6Clinical Psychopharmacology Unit, Service of Clinical Pharmacy and Toxicology, Geneva University Hospitals; and 7OFAC, Geneva, Switzerland

Introduction: Drug manufacturers developed “evergreening strategies” to compete with generic medication after patent termination. These include marketing of slightly modified follow-on drugs. We identified 8 follow-on drugs available in the canton of Geneva during the study period: 3 drugs for which an isomer had been marketed (levocetirizine as follow-on drug of cetirizine; escitalopram/citalopram; esomeprazole/omeprazole); 1 active metabolite (desloratidine—loratadine); 2 combination formulations of the originally patented drug (alendronic acid alone—alendronic acid combined with colecalciferol; simvastatin alone—simvastatin with ezetimib); 1 slow-release drug (alendronic acid alone—alendronic acid combined with colecalciferol); 1 structural analogue (levocetirizine as follow-on drug of cetirizine; escitalopram/citalopram; esomeprazole/omeprazole). The impact of evergreening strategies on health care spending was analyzed in the community in which action could be taken to further develop and potentially improve predictions in Forward Look reports and SMC advice. Disclosure of Interest: None declared.

Results: The 3 scenarios. The “extra-cost” was assessed by the difference between the total cost based on the observed data and the total cost estimated in these 2 sampling methods can be used interchangeably with due consideration of the Hct value when whole blood sample is used. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on uptake of plasma for therapeutic monitoring of Bu levels. GC-MS methods.

Conclusion: Evergreening strategies have been successful in maintaining market share in Geneva, offsetting competition by generics and cost-containment policies. Therefore, health care providers and policy makers should be aware of the impact of evergreening strategies. Disclosure of Interest: None declared.

OC013—A SIMPLIFIED METHOD FOR BUSULFAN THERAPEUTIC DRUG MONITORING USING DRIED BLOOD SPOT SAMPLING IN PEDIATRIC PATIENT UNDERGOING STEM CELL TRANPLANTATION

C.R.S. Uppugunduri; M. Ansari; Y. Théoret; J. Déglon; F. Versace; F. Gummy-Pauss; P. Dayer; J. Desmeules; and Y. Daali

1Department of Pediatrics, Hemato-oncology unit, University of Geneva; 2Department of Pediatrics, Hemato-oncology Unit, University of Geneva, Geneva, Switzerland; 3Department of Pharmacology, CHU Sainte Justine, University of Montreal, Montreal, Quebec, Canada; 4Unit of Toxicology, University Center of Legal Medicine, University of Geneva; 5Unit of Toxicology, University Center of Legal Medicine, University of Geneva; and 6Department of Clinical Pharmacology, Geneva University Hospital, Geneva, Switzerland

Introduction: Intravenously administered Busulfan (Bu) in children undergoing hematopoietic stem cell transplantation (HSCT) exhibits therapeutic window phenomenon requiring therapeutic drug monitoring. The dosage of Bu is adjusted based on the first dose pharmacokinetic parameters. Existing methods for the analysis of Bu require long turnaround times with relatively large amounts of blood collection for plasma separation. Objective: To evaluate the utility of dried blood sampling (DBS) and dried plasma sampling (DPS) using only 5 μL of whole blood or plasma for therapeutic monitoring of Bu levels. Patients (or Materials) and Methods: Venous blood samples were collected from 2 children after the infusion of Bu at doses 1, 2, 3, 5, and 9 (n = 34). Then, 5 μL each of whole blood and plasma were spotted onto Whatman 903 DBS cards and dried at room temperature for 30 minutes. The entire spots were cut and then analyzed by a validated LC-MS/MS method. Bu was also measured by established gas chromatography coupled to mass spectrometry (GC-MS) method using plasma (n = 13) to compare both the methods. Results: A good correlation was observed between the levels measured by DBS and DPS (r 2 = 0.95; slope = 0.84). The Bu levels measured by DPS (r 2 = 0.92; slope = 0.95) and DBS (r 2 = 0.91; slope = 0.80) were correlated with those measured by GC-MS method. The levels estimated by DBS were less than those obtained by DPS and GC-MS methods. The hematocrit (Hct) values of 2 children were in the range of 25.6% to 30.3%, indicating the direct influence of Hct on the measured Bu levels measured by DPS sampling. Therefore, these 2 sampling methods can be used interchangeably with due consideration of the Hct value when whole blood sample is used. The plasma levels can be obtained from DBS levels using the formula “Plasma levels (analyte) = DBS levels analyte (1 – hematocrit).” The plasma levels of Bu estimated using this formula were higher than million over the entire study period if brand and follow-on drug prescriptions were replaced at their corresponding community generic selling price equivalents when available (scenario 3). Conclusion: Evergreening strategies have been successful in maintaining market share in Geneva, offsetting competition by generics and cost-containment policies. Therefore, health care providers and policy makers should be aware of the impact of evergreening strategies. Disclosure of Interest: None declared. P. Bonnabry: No conflict to declare.