Genomic analysis of the causative agents of coccidiosis in domestic chickens

Citation for published version:

Digital Object Identifier (DOI):
10.1101/gr.168955.113

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Genome Research

Publisher Rights Statement:
This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Genomic analysis of the causative agents of coccidiosis in domestic chickens

Adam J. Reid,1 Damer P. Blake,2,3 Hifzur R. Ansari,4 Karen Billington,3 Hilary P. Browne,1 Josephine Bryant,1 Matt Dunn,1 Stacy S. Hung,5 Fumiya Kawahara,6 Diego Miranda-Saavedra,7 Tareq B. Malas,4 Tobias Mourier,8 Hardeep Naghra,1,9 Mridul Nair,4 Thomas D. Otto,1 Neil D. Rawlings,10 Pierre Rivailleur,3,11 Alejandro Sanchez-Flores,12 Mandy Sanders,1 Chandra Subramaniam,3 Yea-Ling Tay,13,14 Yong Woo,4 Xikun Wu,3,15 Bart Barrell,1,21 Paul H. Dear,16 Christian Doerig,17 Arthur Gruber,18 Alasdair C. Ivens,19 John Parkinson,5 Marie-Adèle Rajandream,1,22 Martin W. Shirley,20 Kiew-Lian Wan,13,14 Matthew Berriman,1 Fiona M. Tomley,2,3 and Arnab Pain4

1–20[Author affiliations appear at the end of the paper.]

Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus *Eimeria*, is one of the most important poultry diseases. Understanding the biology of *Eimeria* parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of *Eimeria* that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, *Eimeria* is home to a family of chromoviruses. Analysis of *Eimeria* genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.

Chickens are the world's most popular food animal, and the development of improved drugs and vaccines to combat poultry diseases are vital for worldwide food security. Protozoan parasites of the genus *Eimeria* cause coccidiosis, a ubiquitous intestinal disease of livestock that has major impacts on animal welfare and agro-economics. It is a particularly acute problem in poultry where infections can cause high mortality and are linked to poor performance and productivity. *Eimeria* belong to the phylum Apicomplexa, which includes thousands of parasitic protozoa such as *Plasmodium* species that cause malaria, and the widely disseminated zoonotic pathogen *Toxoplasma gondii*. *Eimeria* species have a direct oral-fecal life cycle that facilitates their rapid spread through susceptible hosts especially when these are housed at high densities (for review, see Chapman et al. 2013). Unsurprisingly, resistance to anticoccidial drugs can evolve rapidly under these conditions and there is a continuing need to develop novel therapies (Blake et al. 2011).

More than 1200 species of *Eimeria* are described (Chapman et al. 2013) and virtually all of these are restricted to a single host species. Domestic chickens (Gallus gallus domesticus) can be infected by seven *Eimeria* species, each of which colonizes a preferred region of the intestine, causing symptoms of differing severity (Table 1; Shirley et al. 2005). Five species induce gross pathological lesions and four of these are the most important in terms of global disease burden and economic impact (*E. acervulina*, *E. maxima*, *E. necatrix*, and *E. tenella*) (Williams 1998).

Results

Genome sequences of the *Eimeria* species that infect domestic chickens

We generated annotated genome sequences of all seven *Eimeria* species that infect domestic chickens. For *E. tenella*, a high quality reference genome incorporating annotation-directed manual improvements for targeted regions was produced for the Houghton strain (tier 1) (Supplemental Table S1) as well as Illumina genomic sequencing data for the Wisconsin and Nippon strains. For *E. maxima*, *E. acervulina*, and *E. necatrix*, we produced draft genomes with automated post-assembly improvements (tier 2) (Supplemental Table S1), and for *E. brunetti*, *E. mitis*, and *E. praecox*, we produced

© 2014 Reid et al. This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
E. mitis
E. brunetti
E. acervulina
E. maxima

There is notably less synteny between the genome of contigs, with only a small number of rearrangements (Supplemental Fig. S1B). Fifty-three point five percent of E. tenella genes were found in repeat-rich regions, suggesting that there is no preference for repeats to occur in gene-poor regions.

Eimeria species biology and genomic sag repertoire

<table>
<thead>
<tr>
<th>Species</th>
<th>Site of development</th>
<th>Disease type</th>
<th>Pathogenicity</th>
<th>sagA</th>
<th>sagB</th>
<th>sagC</th>
<th>Total</th>
<th>Pseudogene fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. praecox H</td>
<td>SI (upper)</td>
<td>M</td>
<td>+</td>
<td>15</td>
<td>0</td>
<td>4</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>E. maxima W</td>
<td>SI (mid)</td>
<td>M</td>
<td>+++</td>
<td>35</td>
<td>0</td>
<td>4</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>E. acervulina H</td>
<td>SI (upper)</td>
<td>M</td>
<td>++</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>E. brunetti H</td>
<td>SI (lower), rectum, caeca</td>
<td>H</td>
<td>++++</td>
<td>61</td>
<td>0</td>
<td>44</td>
<td>105</td>
<td>39</td>
</tr>
<tr>
<td>E. mitis H</td>
<td>SI (lower)</td>
<td>M</td>
<td>+</td>
<td>145</td>
<td>0</td>
<td>27</td>
<td>172</td>
<td>128</td>
</tr>
<tr>
<td>E. necatrix H</td>
<td>SI (mid), caeca*</td>
<td>H</td>
<td>+++++</td>
<td>86</td>
<td>32</td>
<td>1</td>
<td>119</td>
<td>102</td>
</tr>
<tr>
<td>E. tenella H</td>
<td>Caeca</td>
<td>H</td>
<td>+++</td>
<td>60</td>
<td>28</td>
<td>1</td>
<td>89</td>
<td>23</td>
</tr>
</tbody>
</table>

Numbers of sag genes in each Eimeria genome, their breakdown into subfamilies, and the numbers of sag pseudogenes (E. tenella) or pseudogene fragments (other species). (SI) Small intestine; (M) malabsorptive disease; (H) hemorrhagic disease. Levels of pathogenicity are derived from Long et al. (1976).

*Gametogony occurs in the caeca.

draft genomes alone (tier 3) (Supplemental Table S2). The 51.8-Mb E. tenella genome assembly corresponds well with a genomic map (described below), suggesting that it accurately reflects the true genome size (Supplemental Table S1). Furthermore the tier 1 and tier 2 assemblies are predicted to be 93%–99% complete with respect to the T. gondii genome sequence based on the presence of core eukaryotic genes (Supplemental Table S1; Parra et al. 2007).

To investigate chromosome structures, we used whole-genome mapping to improve contiguity of the tier 1 and 2 genomes and were able to place up to 46% of sequence data onto 15 or 16 optical maps for each genome (Supplemental Table S1), which is close to the haploid chromosome number of 14 (del Cacho et al. 2005). Although few sequence markers were available for each chromosome we were able to map unambiguous identities to six of 15 optical scaffolds in E. tenella (Supplemental Table S3).

Phylogeny and synteny between Eimeria species

Previous phylogenetic analyses using small numbers of sequences did not fully resolve relationships between Eimeria species of the chicken (Ogedengbe et al. 2011). Whole-genome phylogeny shows robust separation of E. tenella and E. necatrix from the other species, as well as separation of E. mitis and E. brunetti from E. praecox, E. maxima, and E. acervulina (Fig. 1A). In support of this phylogeny, there is extensive synteny between the genomes of E. tenella and E. necatrix (i.e., many orthologous genes in the same order across contigs, with only a small number of rearrangements) (Fig. 1B). There is notably less synteny between the genome of E. tenella and those of E. maxima and E. acervulina with much of the chromosome structure rearranged, although presumably retaining the same number of chromosomes. Synteny between the genomes of E. tenella and Toxoplasma gondii was nonexistent, with no more than three orthologs (ETH_00031645, ETH_00031660, and ETH_00031665) found in the same order.

Eimeria chromosomes display a banded pattern of repeat-poor and repeat-rich regions

Analysis of E. tenella chromosome 1 revealed alternating regions of repeat-poor (P) and repeat-rich (R) sequences (Ling et al. 2007). We now find this feature is conserved in all chromosomes of E. tenella and across the genomes of all Eimeria species examined (Fig. 1B). The short tandem repeat (STR) content of each genome shows a bimodal distribution with a high frequency peak close to zero and a broad, low frequency peak with a mean ~20%–30% (Supplemental Fig. S1A). This confirms a bipartite structure for the genome. Any region of the genome is either repeat-rich (R; which we define as having a repeat density >5%) or essentially repeat-free (P). The precise repeat content differs between species, with E. tenella having fewer R regions than other species. Of note, E. necatrix is more repeat-rich in regions syntetic with E. tenella as well as across the genome generally (Supplemental Fig. S1B). Fifty-three point five percent of E. tenella genes were found in repeat-rich regions, suggesting that there is no preference for repeats to occur in gene-poor regions.

Eimeria protein-coding sequences are extremely rich in homopolymeric amino acid repeats (HAARs)

STRs can result in strings of single amino acids within predicted protein sequences. The extent of homopolymeric amino acid repeat (HAARs) content in Eimeria tenella is greater than in any other organism sequenced to date (Fig. 2A) and the distribution of homopolymer types is quite different from even closely related organisms such as T. gondii and P. falciparum. The most common STR in Eimeria species is the trinucleotide CAG (Fig. 2B), which occurs preferentially in coding sequences (Fig. 2C). CAG can potentially encode alanine (A), glutamine (Q), serine (S), cysteine (C), and leucine (L), but in E. tenella repeats are rarely translated as C or Q. They are found preferentially as A or Q (Fig. 2D). HAARs of this type, encoding strings of at least seven amino acids, occur in 57% of E. tenella genes, with an average of 4.3 copies per gene. We confirmed that repeats are transcribed and translated in E. tenella, with the data predicting similar proportions of each HAAR type to that found in the genome (Fig. 2D).

An analysis of gene ontology terms showed that genes containing HAARs did not cluster in any particular functional class. However, those involved in information processing tasks such as translation, chromatin assembly, gene expression, and DNA metabolism had fewer HAARs than expected by chance (Supplemental Table S4). Indeed genes conserved across the eukaryotes had an overall lower than average repeat content (2.5% vs. 4.68% for all E. tenella genes). Proteins that are generally considered to be involved in host-parasite interactions such as SAGs, ROP kinases, and MICA had even fewer HAARs on average than those conserved across eukaryotes (0%, 1.88%, and 1.66%, respectively, vs. 2.5%).

We hypothesized that because HAARs are so common in Eimeria species, they are unlikely to interfere with protein structure and function. Indeed only 3.2% of E. tenella HAARs (687 of 21,191) occur in Pfam domains, which make up 12.4% of E. tenella protein sequences. By examining conserved proteins with known 3D structures, we found that serine and glutamine HAARs tend to be insertions in loop or turn regions with medium to high solvent accessibilities.
accessibility, suggesting they do not affect protein folding (Supplementary Table S5). Alanine HAARs often align to helical regions and may result in very similar local structure (Perutz et al. 2002). Furthermore, homology modeling showed that HAARs tend to be located on the outside of proteins, away from regions involved in domain–domain interactions and active sites (Supplemental Fig. S2).

Figure 1. Whole-genome phylogeny and synteny between Eimeria species. (A) Maximum likelihood phylogeny showing the evolutionary relationships between Eimeria species based on alignment of 814 one-to-one orthologs shared with T. gondii. The scale is in substitutions per site. (B) Genomic scaffolds were placed onto optical maps. Black bands show map coverage. Coverage was noticeably better for E. tenella than the tier 2 species. E. tenella maps are named as chromosomes (e.g., C1) where it was possible to reliably identify that chromosome, otherwise they are given their optical map numbers (e.g., O4). Each E. tenella map has been assigned a color and ribbons highlight syntenic regions in the related genomes. E. necatrix is most closely related to E. tenella and correspondingly shows the greatest degree of synteny. The clearest exceptions are (1) O10, which is split between two optical contigs in E. necatrix, and (2) O8, which is similarly split. Map coverage is lower in E. acervulina and E. maxima and this gives the impression that there is a great deal of novel sequence in these species. However, this is largely the result of differential representation of the genomes in their respective maps. Each map is annotated with repeat-poor (blue) and repeat-rich (red) regions ≥30 kb. This highlights the barcode-like patterning across the whole of each genome.
Metabolism is well conserved between *Eimeria* and *Toxoplasma* (Supplemental Fig. S4; Supplemental Data set S3), with the clearest difference being additional enzymes involved in *Eimeria* carbohydrate metabolism. Three of these catalyze reactions in the mannitol cycle, known to be essential for survival of *Eimeria* parasites and not present in other coccidian lineages (Schmatz et al. 1989; Liberator et al. 1998).

The apicoplast is a symbiotic plastid present in most apicomplexans and known to be essential for survival of *T. gondii* (He et al. 2001). Most ancestral plastid genes have moved into the nuclear genome but many of the gene products are post-translationally imported into the apicoplast. The mechanism of import to the apicoplast is poorly understood but two proteins, Tic20 and Tic22, are thought to mediate crossing of the innermost membrane (van Dooren et al. 2008; Lim and McFadden 2010). Genes encoding Tic20 and Tic22 are not found in the *Eimeria* species studied, suggesting either a distinct mechanism for crossing the apicoplast inner membrane or a change in apicoplast function in *Eimeria*.

Apicomplexan genomes have a paucity of common eukaryotic transcription factors (Coulson et al. 2004); instead, the major regulators of stage-specific gene expression are likely to be genes containing DNA-binding domains of the ApiAP2 family (Balaji et al. 2005; Campbell et al. 2010). In *Eimeria* the number of genes containing ApiAP2 domains was found to vary from 44 to 54 (Supplemental Fig. S5; Supplemental Data set S1). We clustered genes containing ApiAP2 DNA-binding domains from apicomplexans and representative outgroups and identified 121 orthologous groups (Supplemental Fig. S6). We found 21 *Eimeria*-specific ApiAP2 groups, 22 further

Figure 2. Characterization of HAARs in *Eimeria* protein sequences. (A) *Eimeria tenella* has a greater number of HAARs than any other genome sequenced and a distinct distribution of HAAR types compared with other repeat-rich genomes, including *Plasmodium falciparum* and the more closely related and not especially repeat-rich *Toxoplasma*. (B) The most common STRs in *Eimeria* genomes are variations on CAG. The second most common are variations on a telomere repeat which we call telomere-like repeats due to their locations throughout the genome. (C) CAG repeats occur in protein-coding regions of the genome more than expected. (D) CAG repeats can encode strings of one of five amino acids. In *Eimeria* they tend to encode alanine and glutamine more often than expected, serine as often as expected, and leucine and cysteine more rarely than expected. A very similar pattern is observed in a limited selection of *E. tenella* peptides derived from proteomics experiments.
groups shared by *Eimeria* and other Coccidia, and five pan-apicomplexan clusters (apiap2_og_336, apiap2_og_90, apiap2_og_1428, apiap2_og_546, apiap2_og_456) (Supplemental Data set S1). A small number of *sag* genes peak in expression at each stage; *sagB* genes all peak in expression in second-generation merozoites, suggesting that they may be particularly important during the latter, pathogenic, stages of infection (Fig. 3D).

The total number of *sag* genes varies greatly between species (Table 1). This may simply reflect the overall phylogeny (see Fig. 1A), but it is notable that species that cause the most severe pathologies have higher numbers of *sags*. Thus *E. praecox*, which causes only superficial damage and is widely regarded as the least pathogenic (Allen and Jenkins 2010), has only 19 *sags*, whilst *E. tenella*, *E. necatrix*, and *E. brunetti*, which develop deep in the mucosa causing tissue damage, inflammation, and intestinal hemorrhage (McDonald and Shirley 1987), have 89, 119, and 105 *sags*, respectively. However, *E. mitis*, with the greatest number of *sags* (172), does not fit this pattern; like all species it can impair bird performance and productivity but does not cause gross lesions in the intestine. It is also the case that species which induce potent immunogenicity upon reinfection after exposure to small numbers of parasites (*E. maxima*, *E. praecox*, and *E. acervulina*) have the lowest numbers of *sags* whilst those that are least immunogenic (*E. necatrix* and *E. tenella*) have high numbers; however, *E. brunetti* and *E. mitis*, which are of intermediate immunogenicity, do not fit this pattern.

We used remote homology detection to explore the evolutionary origin of the *sag* family. The cysteine-rich secretory protein family (CAP), found in a wide range of eukaryotes (Gibbs et al. 2008), had low but significant sequence similarity to *sags* (Fig. 3E). The most similar CAP-domain containing proteins were those of *T. gondii*, suggesting that *sag* genes are likely derived from CAP-domain containing genes in the common ancestor of *E. tenella* and *T. gondii*, rather than by horizontal transfer from another species such as the host. Recent protein structural evidence shows that the *srs* surface antigen gene family in *T. gondii* is related to a small group of cysteine-rich proteins in *Plasmodium* (Arredondo et al. 2012). These results suggest distinct evolutionary origins for the principle surface antigen gene families of the relatively closely related *T. gondii* and *E. tenella*.

Discussion

Control of pathogens such as *Eimeria* species has been essential for development of modern poultry production and is increasingly important for providing global food security. The availability of genomic resources for the seven *Eimeria* species that infect domestic chickens will underpin development and longevity of new anticoxidial drugs and vaccines.

The most striking feature of the *Eimeria* genomes is the disruption of more than half of all protein coding sequences with HAARs. Across every chromosome of each species we found regions where 20%–30% of the sequence comprised simple tandem repeats, interspersed with relatively repeat-free regions. Although a variety of different simple repeats were found outside of coding regions, those within coding regions were almost always based on runs of the trinucleotide CAG. We examined whether these repeats might have a particular function in the proteome but could find no association with known functional groups and showed that the repeats localized to structurally neutral regions within proteins. We hypothesize that poly-CAG is the most benign and easily evolvable coding repeat and that there is sufficient pressure on maintaining repeat banding to allow for frequent deleterious mutations. The repeat regions might function at the DNA level,
perhaps in tertiary structure or gene regulation, and be selected for functional neutrality at the protein level, as we have observed. This hypothesis could be explored by chromatin immunoprecipitation and chromosome conformation capture studies. An alternative hypothesis is that rapid mutation of coding sequences provides evolutionary advantages, which would suggest selection for re-
peats at the protein level. Although the HAARS we examined appeared to be neutral in their effects on protein structures (presumably deleterious changes are lost in the population), occasional mutations may have been sufficiently beneficial to support the heavy burden. However, genes known to be involved in host-parasite interaction were found to be relatively protected from HAARS, and why repeats should have appeared in a banded pattern across chromosomes is not clear in this scenario.

We have characterized, for the first time, retrotransposon-like elements in an apicomplexan. Disruption or replacement of genes by transposon-mediated transgenesis holds the potential to improve our molecular arsenal for unraveling parasite biology, and also for developing attenuated vaccines. This approach has been attempted in *Eimeria* species using piggyBAC transposons; however, rates of insertion of these elements are low and target particular sequences (Su et al. 2012). Random, high-frequency insertions of native transposons would allow high throughput knockout screens, accelerating our understanding of *Eimeria* biology. The retrotransposons identified here are at best partially degraded and it is not clear whether they are actively retrotransposed. However, it opens the possibility that intact retrotransposons might be present in more distantly related *Eimeria* species.

To develop cheap, effective new vaccines for coccidiosis, we must understand how the parasites interact with the host immune system. Key to this may be the *sag* family of genes encoding surface antigens, some of which have been shown in vitro to induce pro-inflammatory cytokine responses (Chow et al. 2011). Whilst some *sags* are shared across all the *Eimeria* species studied, others are clade-specific. We found multiple *sags* to be co-expressed on the surface of infective parasites, suggesting that the avian immune system is presented with a diverse array of related epitopes, which could potentially aggravate inflammation. Parasites that rely on a healthy host for vector transmission are thought to use diverse arrays of related antigens to reduce pathogenicity (Spence et al. 2013) but for *Eimeria*, which has a simple oral-fecal life cycle, the induction of inflammation leading to diarrhea could increase parasite transmission. *Eimeria* *sag* genes have evolved from the CAP-domain superfamily of cysteine-rich secretory proteins and are unrelated to the major surface antigens of other Apicomplexa. CAP domains are also found on the surface of parasitic helminths where they are proposed to interact with host immune systems (Chalmers and Hoffmann 2012).

Methods

Parasite cultivation

The Houghton (H) strains of *E. acervulina*, *E. brunetti*, *E. mitis*, *E. necatrix*, *E. praecox*, and *E. tenella*, and the Weybridge (W) strain of *E. maxima*, were used for principle sequencing. The H strains were isolated at the Houghton Poultry Research Station (UK) and are the progeny of single oocyst infections. The *E. maxima* W strain was isolated at the Weybridge Central Veterinary Laboratory from a single oocyst infection. The Wisconsin (Wis) (McDougal and Jeffers 1976) and Nippon-2 (N2) *E. tenella* lines were used for comparative analyses. All parasites were propagated in vivo in 3- to 7-wk-old Light Sussex chickens under specific pathogen free (SPF) conditions at the Institute for Animal Health or Royal Veterinary College and purified using established methods (Long et al. 1976).

Summary of genome sequencing and assembly

Genomic DNA was prepared from purified sporulated oocysts. We used Sanger capillary sequencing data previously generated for *E. tenella*, described in Ling et al. (2007) and deposited in the Trace Archive (http://www.ncbi.nlm.nih.gov/Traces; CENTER_PROJECT = “EMBL”). These paired reads had a range of insert sizes to a combined coverage of ~8×. *E. tenella* Illumina GAIIx sequencing libraries were prepared with insert sizes of 300 bp and 3 kbp and either 54 bp or 76 bp paired-end reads with a combined coverage of ~160×. Capillary reads were assembled using ARACHNE v3.2 using default parameters (Batzoglou et al. 2002). IMAGE (Tsai et al. 2010) was used to fill gaps in scaffolds and extend contigs with Illumina reads, running six iterations (three with k-mer = 31 and three with k-mer = 27), mapping with BWA (Li and Durbin 2009). The consensus sequence from the ARACHNE-IMAGE assembly was corrected with Illumina reads using iCORN (Otto et al. 2010). All Illumina reads which did not map to this assembly were assembled using Velvet (Zerbino and Birney 2008), scaffolding was performed with SSPACE (Boetzer et al. 2011), and gaps were filled using IMAGE (Tsai et al. 2010).

Whole-genome phylogeny

Each of 814 one-to-one ortholog groups shared across the seven *Eimeria* species with *Toxoplasma gondii* ME49 was aligned using MAFFT v7 (Katoh and Standley 2013). Highly variable sites were trimmed using trimal (Capella-Gutierrez et al. 2009) (“automated1” option). The alignments were concatenated using FASconCAT (Kuck and Meusemann 2010) and the resulting alignment used to construct a maximum likelihood phylogenetic tree using RAXML with the model PROTGAMMALG4XF (Stamatakis et al. 2005; Le et al. 2012), bootstrap *n* = 100. Bootstrap percentage support is shown along the branching nodes. The tree was rooted using *T. gondii* as the outgroup.

Transcriptome sequencing and analysis of *Eimeria tenella*

Unsporulated oocysts (two biological replicates), sporulated oocysts (single replicate), purified sporozoites (single replicate), and second-generation merozoites (single replicate) of the *E. tenella* H strain were selected for transcriptome analysis after harvest and purification as described previously (Novaes et al. 2012). Total RNA was extracted from oocysts using a Qiagen RNeasy kit (Qiagen) and from sporozoites and second-generation merozoites using the Qiagen RNeasy Animal Cells purification protocol as described by the manufacturer. All samples were DNase-treated using the Qiagen RNase-free DNase kit during RNA purification.

Library preparation, sequencing protocols, and data processing were the same as for Reid et al. (2012). For *sag* gene expression clustering in Figure 3D, mean RPKM values were taken for unsporulated oocyst samples and clustering performed using MBCluster .seq with 10 clusters (Si et al. 2014). Clusters were ordered by the stage of peak expression across each cluster. The figure was drawn with Circos (Krzywinski et al. 2009).

Synteny analysis

MCScanX (Wang et al. 2012) was used to determine regions of synteny between pairs of species based on the order of pairwise
orthologs identified using OrthoMCL (Li et al. 2003). Default values were used except for the MATCH_SIZE option, which was set to 3 for comparison of E. tenella and T. gondii. For other comparisons it was set to 5.

Classification and analysis of gene families
We used several methods to identify and classify metabolic genes, protein kinases, transcription factors, and Eimeria-specific gene families. Full methodological details are available in the Supplemental Material.

Retrotransposon analysis
Approaches based on domain content and the presence of long terminal repeats were used to identify and classify retrotransposons. Full methodological details are available in the Supplemental Material.

Single-cell expression of sag genes
Single fluorescent E. tenella sporozoites and second-generation merozoites (Clark et al. 2008) were sorted into 96-well plates. RNA was reverse-transcribed for a panel of target transcripts by adding gene-specific reverse primers (Supplemental Table S9). Stage-specific multi-cell-derived cDNA or single-cell cDNA with each single-plex primer pair were included as positive controls P1 and P2. No template multiplex and no reverse transcription reactions were included for each assay as negative controls N1 and N2.

MDBK cell binding by SAGs
Confluent monolayers of MDBK cells were blocked with 1% BSA in PBS for 2 h at 4°C, washed three times in PBS, then incubated with recombinant-expressed ESAG proteins (0.5 mg/mL) for 1 h at 40°C. Monolayers were washed four times with PBS to remove unbound proteins, then cells and bound proteins were solubilized in SDS sample buffer, separated by SDS-PAGE, transferred to nitrocellulose by electroblotting, and probed with rabbit hyperimmune sera raised to recombinant SAG proteins.

Classification of repeat regions
We used Tandem Repeat Finder (Benson 1999) to identify STRs in genomic sequences. It was run with the following parameters: 2, 1000, 1000, 80, 10, 25, 1000, as were used in Ling et al. (2007) and processed using TRAP v1.1 (Sobreira et al. 2006), run with default parameters. We defined a repeat density of 0.05 over a window of 1 kb as defining a repeat-rich region based on the distribution of repeat density across E. tenella. Scaffolds shorter than 5 kb were not included in the analysis.

We used SEG (Wootton and Federhen 1996) with parameters 7, 0, 0, –1, to identify HAARs of length ≥2. Repeats of “X,” the symbol used when the amino acid is unknown, and repeats which contained stop codons were removed from the SEG output file. To determine the HAAR content of protein sequences in other organisms, we ran SEG on all complete proteomes from UniProt (≈2000 species, ~10-m sequences). We then ranked each species by the median number of repeats per sequence. We took the top 10, excluding viruses, and also T. gondii for comparison.

Full methodological details of protein structural and proteomic analyses of HAARs are available in the Supplemental Material.

Data access
Sequencing reads and assemblies for each genome have been submitted to the European Nucleotide Archive (ENA; http://www. ena.eu/); E. tenella Houghton, E. maxima Weybridge, E. acervulina Houghton, E necatrix Houghton, E. mitis Houghton, E. brunetti Houghton, and E. praecox Houghton (PRJEB4918). Sequencing reads for E. tenella Nippon and E. tenella Wisconsin have been submitted to ENA (PRJEB4009). Transcriptome sequences for E. tenella Houghton have also been submitted to ENA (ERP001847) and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/; E-ERAD-109).

List of affiliations
1Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; 2Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, United Kingdom; 3The Pirbright Institute, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom; 4Computational Bioscience Research Center, Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia; 5Program in Molecular Structure and Function, Hospital for Sick Children and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario MSG 1X8, Canada; 6Nippon Institute for Biological Science, Ome, Tokyo 198-0024, Japan; 7Fibrosis Laboratories, Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; 8Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark; 9School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; 10European Bioinformatics Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; 11Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA; 12Unidad Universitaria de Apoyo Bioinformático, Instituto de Biotechnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico; 13School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia; 14Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor DE, Malaysia; 15Amgen Limited, Uxbridge UB8 1DH, United Kingdom; 16MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; 17Department of Microbiology, Monash University, Clayton VIC 3800, Australia; 18Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; 19Centre for Immunity, Infection and Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; 20The Pirbright Institute, Pirbright Laboratory, Pirbright, Surrey GU24 0NE, United Kingdom.

Acknowledgments
The work was funded by BBSRC grants S17413 and S19705/6, Wellcome Trust core funding to Welcome Trust Sanger Institute (WTSI), and faculty baseline funding from the King Abdullah University of Science and Technology (KAUST). We thank Mike Quail, Karen Mungall, Carol Churcher, and members of the core DNA pipelines for sequencing at WTSI and Bioscience core laboratories for sequencing operations at KAUST. We acknowledge Martin Aslett from WTSI for data submission and Dora Harvey and Fionaadh Carroll from the Institute for Animal Health for technical assistance. K.-L.W. would like to acknowledge funding from the Ministry of Science, Technology and Innovation, Malaysia (Project No. 07-05-16-MGI-GMB10) and the Universiti Kebangsaan Malaysia (Project No. DIP-2012-21). J.P. and S.S.H. were funded by the Canadian Institute for Health Research (CIHR #MOP84556).
References

Coccidiosis genomics

Received October 29, 2013; accepted in revised form July 8, 2014.