Workshop review: Understanding and assessing the risks of stem cell-based therapies

1 IMI SafeSciMET, Avenue de la Toison d’Or 56-60 B-1060, Brussels, Belgium
2 MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool L69 3GE, UK
3 Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, Pharmazentrum, University of Basel, Switzerland
4 The Institute of Translational Medicine, the University of Liverpool, Liverpool L69 3GE, UK
5 The Institute of Integrative Biology, the University of Liverpool, Liverpool L69 7ZB, UK
6 Laboratorios Almirall, S. A. Laurea Miro, 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
7 SANOFI - Research & Development, Disposition, Safety and Animal Research, 3, digue d’Alfortville, 94140 Alfortville, France
8 Uppsala biomedicinska centrum BMC, Husarg. 3 Uppsala University, Sweden
9 Centre for Stem Cell Biology, Department of Biomedical Science, the University of Sheffield, Western Bank, Sheffield, S10 2TN UK
10 Developmental & Regenerative Biomedicine, School of Biomedicine, Faculty of Human and Medical Sciences, 3rd Floor AV Hill, the University of Manchester, Oxford Road, Manchester, M13 9PT, UK
11 MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, U.K
12 Department of Gastroenterology, Hepatology and Infectious diseases, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
13 OakMore Solutions Ltd, Uplees Road, Faversham, Kent, ME13 0QR, UK
14 ReNeuron Limited, 10 Nugent Road, Surrey Research Park, Guildford, Surrey GU2 7AF, UK
15 Medicines and Healthcare Products Regulatory Agency (MHRA), 151 Buckingham Palace Road, Victoria, London SW1W 9SZ, UK
16 Paul Ehrlich Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
17 Faculty of Science, Leiden Academic Centre for Drug Research, Toxicology, Leiden, Netherlands
18 Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
19 UK Stem Cell Bank, National Institute for Biological Standards and Control, MHRA, Hertfordshire, EN6 3QG, UK
20 Collectis AB, Arvid Wallgrens Backe 20, SE-413 46, Goteborg, Sweden
21 GSK, David Jack Centre for R&D, Park Road, Ware, Hertfordshire, SG12 0DP, United Kingdom
22 Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Cheshire, UK
23 CN-bio Innovations Limited, Centre for Innovation & Enterprise, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, OX5 1PF, UK
24 Institute of Veterinary Pathology, Yetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, Zurich, CH-8057
25 School of Bio Sciences & Technology and Centre for Biomaterials Science & Technology, VIT University, Vellore, India. 632014
26 Translational Safety, Drug Safety and Metabolism, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Rd, Cambridge, CB4 0FZ

*These authors contributed equally

*Present address: Cell Therapy Catapult, Biomedical Research Centre, R&D 16th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT, UK
Abstract

The field of stem cell therapeutics is moving ever closer to widespread application in the clinic. However, despite the undoubted potential held by these therapies, the balance between risk and benefit remains difficult to predict. As in any new field, a lack of previous application in man and gaps in the underlying science mean that regulators and investigators continue to look for a balance between minimizing potential risk and ensuring therapies are not needlessly kept from patients. Here, we attempt to identify the important safety issues, assessing the current advances in scientific knowledge and how these may translate to clinical therapeutic strategies in the identification and management of these risks. We also investigate the tools and techniques currently available to researchers during pre-clinical and clinical development of stem cell products, their utility and limitations and how these tools may be strategically used in the development of these therapies. We conclude that ensuring safety through cutting-edge science and robust assays, coupled with regular and open discussions between regulators and academic/industrial investigators are likely to prove the most fruitful route to ensuring the safest possible development of new products.

Abbreviations: (human/murine) induced pluripotent stem cell, (h/m)iPSC; (human/murine) embryonic stem cell, (h/m)ESC; mesenchymal stem cell, MSC; hematopoietic stem cells, HSCs; adult stem cell, ASC; graft versus host disease, GVHD; major histocompatibility complex; MHC; minor histocompatibility complex, mHC; Oct4, Sox2, Klf4, c-Myc, OSKM; human leukocyte antigen, HLA; Magnetic Resonance imaging, MRI; computed tomography, CT; positron emission tomography, PET; single photon emission computed tomography, SPECT; superparamagnetic iron oxide particles, SPIO; 9-[4-[18F]Fluoro-3-(hydroxymethyl)butyl]guanine, [18F]FHBG; perfluorocarbon, PFC; fluorine-19, 19 F; single nucleotide polymorphism, SNP; Food and drug administration, FDA; Medicines and healthcare products regulatory agency, MHRA. QD, quantum dots; G/RFP, green or red fluorescent protein
I. Introduction

Stem cell therapies are moving rapidly into clinical application. While it is important that these therapies are advanced into the clinic, their safety must be continually evaluated. Here we outline the known risks of stem-cell therapeutics (Figure S1) and discuss how they can be assessed and managed through preclinical and clinical trials. This review is the output of an IMI SafeSciMET workshop held at the University of Liverpool.

A key issue in the understanding of the safety concerns is the breadth of the human stem cell field, with several cell types falling under the umbrella term of ‘stem cell’:

- **Human embryonic stem cells (h)ESCs** are pluripotent cells, first isolated from human embryos in 1998 by James Thompson1.
- **Induced pluripotent stem cells ((h)iPSCs)** were first reported in 2006. Somatic cells were reprogrammed using the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM), to a pluripotent stem cell state2,3.
- **Adult stem cell (ASCs)** covers several cell types including mesenchymal and hematopoietic stem cells and tissue-specific progenitors which reside in the human body throughout an individual’s life and in comparison to pluripotent stem cells, generally have a more limited expansion and differentiation capacity4,5.

Some adult stem cell-based therapies are clinically available, such as bone marrow or cord blood transplants containing hematopoietic stem cells6,7, skin grafts for burns8, and mesenchymal stem cells for graft vs host disease (GVHD) in children (Canada and New Zealand)9.

Additionally, over 3000 trials associated with stem cells are currently collated in the international clinical trial registry platform (www.who.int/trialsearch). The majority of these are adult stem cell-based therapies, likely attributable to the longer established use of these cells.

The registry also includes the first pluripotent-based therapies to be subjected to clinical trials; table 1 highlights the narrow scope of these hESC/hiPSC-derived therapeutics, with 9 of the 10 treatments associated with macular dystrophy or degeneration, including the recently approved first human trial using hiPSCs10. Use of the eye as a first application of these cells is ideal: the graft size required is small, retinal pigment epithelial cells are easily differentiated to high purity, and the grafts can be visualized non-invasively, all contributing to a lower risk profile than hESC/hiPSC grafts in less accessible organs11,12. Other iPSC-related trials listed on the registry are related to the generation of genotype or disease-specific iPSC lines for use as disease/genotype models and stem cell banks, highlighting the broad appeal of iPSCs.

Despite the basic technology being in place to produce a wider range of therapies, many aspects of the field, including safety, remain incompletely understood, contributing to the cautious translation from theoretical benefits to clinical application.
II. Stem cell risk factors

II.1 Tumorigenic potential

A major concern over the use of stem cell therapies is the perceived risk of tumorigenicity. This is exemplified by the investigation of a tumor which developed four years after fetal neural stem cell transplantation for ataxia telangiectasia13. Subsequent analysis found that the tumor was derived from the transplanted material. Similar cases have also been reported in the treatment of spinal injury with olfactory mucosal cell transplantation; following presentation with back pain 8 years after the treatment, the patient was found to have developed a mucosal-like mass at the transplant location14. This study is particularly pertinent given that the treatment used adult stem cells, which are often considered to be less tumorigenic than fetal or pluripotent stem cells, and the recent ground-breaking treatment of spinal injury with olfactory ensheathing cells15. In this study, the authors report no adverse effects after 19 months; however, tumors from stem cell grafts can arise many years after transplantation, highlighting the need for extensive follow-up programmes to reduce patient risk.

The capacity for undifferentiated pluripotent stem cells to form teratomas \textit{in vivo} is of particular concern16. Therefore, these cells will be differentiated before transplantation. However, the risk remains that not all cells will be fully differentiated. One study showed that despite functional liver engraftment, hESC-derived hepatocyte-like cells transplanted into immunocompromised mice developed splenic and liver tumors containing endodermal and mesodermal cell types17. Teratomas have also been shown to be able to form from as little as 0.2\% SSEA-1-positive pluripotent cells, demonstrating that, even at high levels of purity, teratoma formation potential remains18.

It is therefore vital to prevent undifferentiated cells passing through to the differentiated cell population. Techniques to address this problem include small molecules targeting stearoyl-CoA desaturase-1, which selectively causes cell death in undifferentiated iPSC/ESCs19. However, current analytical techniques are not reliably sensitive enough to detect the removal of all pluripotent cells20. Therefore, it is important to take other factors, such as the disease and the number of cells transplanted into account, as these will likely alter the chances of subsequent teratoma formation21. Recent work has alleviated some concerns, a non-human primate model for autologous transplants showed that iPSC-derived mesodermal stromal-like cells went on to form functional tissue, without teratoma formation22.

Human studies are the only true way to ascertain the teratoma risk in man. The first human studies were conducted by Geron in 2009, using hESC-derived oligodendrocyte progenitor cells for spinal injury treatment23. The trials were halted for financial reasons, but in the few patients treated, no tumors have been reported24. Clinical trials investigating the use of hESC- and iPSC-derived retinal pigmented epithelial cells in macular degeneration are currently ongoing21 and just starting10, respectively, with no tumor formation reported as yet. If successful, these trials are likely to alleviate some of the concerns surrounding tumorigenesis from pluripotent stem cells.

Pluripotent cells can be cultured indefinitely \textit{in vitro}, making scale-up relatively straightforward. However, during expansion the cells are susceptible to chromosomal aberrations and karyotype abnormalities25-32, potentially due to the artificial conditions in which the cells are cultured, increasing the potential for post-transplant malignancy. Pioneering work has investigated these aberrations, commonly found at chromosomes 1, 12, 17 and 20, at higher resolution; however, it remains to be
seen if the ‘culprit’ genes can be identified for screening26-28, 30-36. It is clear that smaller genomic changes also occur, often at a level not readily detected by standard G-banding26; the significance of these changes to safety is unclear. Much work has been focused on the removal of pluripotent stem cells from the transplanted material; however techniques which allow for the removal for genotypically compromised cells would be of equal benefit to the therapeutic safety profile27. Karyotypical changes are not limited to pluripotent cells, with ASCs also thought to develop abnormalities during \textit{in vitro} culture34; however, these findings have been debated, as demonstrated by the correspondence between Sensebe \textit{et al.},38 and Ben-David \textit{et al.},39.

iPSCs have additional safety concerns. The development of non-integrative reprogramming techniques, utilizing direct transfection of proteins or mRNAs, Sendai viruses or episomal plasmids, has reduced concerns regarding incomplete promoter silencing and genomic disruptions of traditional techniques40-43. Some have also replaced the potentially oncogenic OSKM reprogramming factors with Sall4, Nanog, Esrrb, and Lin2844; these factors are thought to be less efficient, but derive higher quality iPSCs with reduced aberrations in histone variant 2A.X, which has been shown to be a key determinant of iPSC/ESC quality and developmental potential45. Others have utilized microRNAs and small molecules to reprogram somatic cells46, 47; however, at the time of writing, these reports are yet to be repeated.

Additional studies investigating the genomic integrity of iPSCs have shown that DNA damage sustained during reprogramming may not be fully repaired in the resulting cells48. Furthermore, reprogramming cord blood cells reduced the number of DNA mutations when compared to dermal fibroblasts49, suggesting that reprogramming from neonatal or more stem-like cells may be theoretically safer, albeit more challenging to obtain.

\textit{II. Immunogenic potential}

Maintaining functional immunologic tolerance of stem cells and their derivatives is crucial. Rejection is considered to be due to a mismatch in expression of human leukocyte antigens (HLA), minor histocompatibility complex (mHC) antigens and ABO blood group antigens following allogeneic transplant (Figure S2). Generally, allogeneic matching for both HLA and mHC is not feasible due to extensive polymorphisms.

Undifferentiated ASC immunogenicity studies are particularly important, as, unlike pluripotent cells, they can be administered without differentiation. Mesenchymal stem cells (MSCs) have a unique capacity amongst ASCs to modulate the immune response through a HLA-independent50 dampening of inflammatory cytokine release51-53. Additional low HLA-I and no extracellular HLA-II51 alongside little or no expression of B- and T-cell co-stimulatory molecules54, 55 on MSCs, suggest a potential to both modulate and avoid immune surveillance.

Other ASCs, such as hematopoietic stem cells (HSCs) have also demonstrated some immune avoidance capabilities56, 57, but allogeneic transplants are still susceptible to rejection58. Moreover, the vast experience with the use of allogeneic HSC transplants for the treatment of haematological malignancies and other conditions has shown the potential for GVHD as a result of allogeneic T-cell infiltration from the graft. This represents a major risk factor and cause of patient morbidity and mortality, with ~15% of allogeneic HSC transplants resulting in fatalities59. This is a large and important topic which is well-reviewed by Blazar \textit{et al.},60. Interestingly, MSCs have been used for the treatment
of GVHD (Prochymal®)⁹, ⁶¹, ⁶². This has led some to suggest that MSCs could be used as part of the stem cell transplant to reduce the potential for both GVHD and graft rejection⁶³.

Due to tumorigenic risk, clinical administration of pluripotent stem cells is likely to be in the form of a differentiated population, thus any immunogenic assessment should focus on the differentiated product⁶⁴. It is generally accepted that there is little to no rejection in autologous cells, even following in vitro culture. Therefore, research has focused on developing stem cells which are genetically identical to the recipient. Recently, somatic cell nuclear transfer was achieved in humans, allowing for the isolation of hESCs expressing the donor genotype⁶⁵, ⁶⁶.

iPSC-based therapy remains the most promising technique to realizing pluripotent autologous therapy. Whilst initial reports suggested immunogenicity in syngeneic transplants⁶⁷, two subsequent studies found no evidence of acute or chronic immunogenicity towards differentiated iPSCs (both spontaneous and directed)⁶⁸, ⁶⁹. Further, de Almeida et al., reported that, in contrast to rejected iPSCs, syngeneic iPSC-derived endothelial cells were accepted in mice, demonstrating a comparable tolerogenic response to syngeneic primary endothelial cells⁷⁰. Direct comparison of autologous and allogeneic transplanted iPSC-derived neurons in non-human primates also revealed minimal immune response in autologous transplants; whereas allogeneic transplants were immunogenic⁷¹. Therefore, current evidence points towards immunological tolerance of autologous terminally differentiated transplanted stem cells.

The timescale and costs associated with personalized therapies may mean that they are used as an alternative option when HLA matching cannot be achieved from stem cell banks containing carefully selected donor cell-lines⁷²-⁷⁴. A second consideration is for disorders in which their etiology is genetically-linked, and whether patient-derived transplanted material containing the diseased genotype would have therapeutic efficacy; autologous cells in such cases may require gene therapy.

One method of dealing with the immune response to cell grafts is encapsulation⁷⁵, ⁷⁶. Encapsulation reduces interaction with immune cells and consequently reduces the risk of rejection, whilst maintaining efficacy through the movement of factors (e.g. cytokines) across a semi-permeable membrane. Furthermore, encapsulation may also prevent tumors from reaching tissues outside the capsule. Such techniques are currently being developed for use in diseases such as diabetes and may represent an elegant solution to a complex problem⁷⁷-⁷⁸. Notwithstanding the clear potential, the development of such a system is not trivial, and despite sustained efforts and sequential developments, the translation to a clinically effective technology has yet to be achieved⁷⁹.

Another immunological consideration is the culture conditions. Cell culture and manufacturing conditions may introduce immunogenic alterations. For example, fetal bovine serum and sialic acid derivative Neu5G from mouse feeder layers, have both been shown to alter the immunogenicity of stem cells⁸⁰, ⁸¹. Therefore, certified animal component-free products should be used wherever possible.

II.III Biodistribution
Biodistribution encompasses the risks associated with the migration, distribution, engraftment and long-term survival of the transplanted material.

Different routes of administration result in differential dissemination patterns and risks. Systemic administration can lead to cells becoming entrapped in the lung or microvasculature, causing dangerous side-effects, such as the pulmonary emboli reported following intravenous administration of adipose-tissue derived stem cells\(^{84}\). Administration in a feeding artery of the target tissue has been proposed to reduce these risks\(^{85}\); however, the risk of microvascular occlusions remain. Direct transplant to the targeted organ/area may reduce these risks \(^{86, 87}\); however, this is likely to be location-dependent and may require invasive surgery, e.g. the liver. Therefore, the chosen method must consider the target pathology, therapeutic objectives and the patient risk-benefit profile\(^{88, 89}\).

Once administered, up to 90% of transplanted cells are lost due to physical stress, inflammation, hypoxia, anoikis or immunogenic rejection\(^{90, 92}\). To achieve therapeutic efficacy, large numbers of cells may therefore be required, increasing the risk of teratoma formation\(^{21}\) or ectopic engraftment. Thus, the minimum number of cells required for effective treatment should be ascertained as part of product development.

A recent study of neural stem cells in a model of spinal cord injury reported ectopic cell growth 9-10 weeks post-transplant at various points along the spinal cord and brainstem\(^{91}\). These were hypothesised to have travelled via the cerebral spinal fluid, colonized and further proliferated, highlighting the need to understand the biodistributary properties of the treatment before clinical application.

The half-life of the transplanted material is another factor which can alter the level of risk. If short, the risk associated with the transplanted material is reduced accordingly. However, if therapeutic efficacy is limited to the short-to-medium term, chronic diseases may require repeated administration and thus an understanding of the likely dosing regime is another key consideration for risk assessment.

III. Regulation of stem cell therapeutics

One of the major limitations of stem cell therapeutics is the heterogeneous character and limited experience of their development. Consequently, no specific European (European Medicines Agency, EMA) or UK (Medicines and Healthcare Products Regulatory Agency, MHRA) regulatory guidance\(^{92}\) addresses technical aspects of the drug development program in detail, e.g. type, size and duration of non-clinical studies.

Regulators have attempted to address these problems by drafting guidelines and reflection papers. The “Guideline on human cell-based medicinal products (EMEA/CHMP/410869/2006)” was adopted in 2008, before the unifying regulation on advanced therapy and medicinal products came into force\(^{93}\), and gives a generic overview on the requirements for the licensing of cell-based medicinal products; however, the information provided is not very detailed. A subsequent reflection paper on stem cell-based medicinal products (CAT/571134/09) was adopted in 2011, focusing more specifically on stem-cell based medicinal products and also discusses the experiences gained with cell-based products, including a summary of the challenges associated with biodistribution and immunogenicity studies.
However, since no detailed requirements are defined, the applicant is still required to implement an appropriate development program that addresses the product-specific risks.

It is highly advisable to engage in discussions with the regulatory bodies early in the development of the product. Most regulatory agencies develop structures to facilitate the interaction with developers (e.g. the MHRA innovation office and the EMA innovation task force) and may provide scientific advice to assist product development.

For the development of advanced therapy medicinal products, a risk-based approach can be used as a matrix to decide which non-clinical data are needed. The (optional) risk-based approach encompasses intrinsic (cell-related) and extrinsic (manufacture-related) risks associated with the medicinal product and the subsequent development and implementation of the appropriate assays to assess these risks.

Further help with risk assessment is available in the “Guideline on the risk-based approach according to annex I, part IV of Directive 2001/83/EC applied to advanced therapy medicinal products” (EMA/CAT/CPWP/686637/2011). This document provides examples illustrating the risk-based approach. Likewise, (non-binding) guidance documents are also provided by the Food and Drug Administration (FDA) in the USA.

As a regulatory pre-requisite, good manufacturing practice must also be followed, as well as the use of clinical grade stem cell products and procedures, free of microbiological and non-microbiological contaminants. Similar practices should be applied to pre-clinical research in order to allow predictable translation of therapies to the clinic.

The importance of regulation is highlighted by the report on the unregulated use of fetal brain-derived olfactory ensheathing cells for the treatment for spinal cord injuries. The authors found little-to-no benefit from the treatment, but complications including meningitis and death. Whilst this is an extreme example, many unregulated stem cell treatments are now available across the world (well reviewed by Zarzecny et al., 96). In 2011, Celltex® began offering ASC-based therapies in Texas, USA without FDA approval, igniting debate about the regulation of stem cell therapeutics. Subsequently, the FDA won a recent court battle to regulate proliferated stem cells as biological drugs and documents encapsulating these new regulatory powers are in preparation.

IV. Pre-clinical and clinical assessment

IV.I Tumorigenic and immunogenic pre-clinical and clinical trials/assays

In terms of both tumor- and immunogenicity, risk cannot be reliably assessed when the model is not predictive, so it is important to match the targeted disease phenotype to the animal or *in vitro* assay. Traditional medicinal product development routes may be appropriate (i.e. going from simple to complex, *in vitro* to *in vivo* and animal to human). However, some therapies may require multi-model studies to provide the fullest understanding of both efficacy and safety, whilst other therapies may not require an animal model as there may be little relevance. Future pre-clinical assessments may also use iPSC-derived cells as a source of a diseased phenotype as the most clinically relevant assay of therapeutic safety and efficacy.

Assays for the assessment of tumorigenic potential
The tumorigenic potential of cell-based therapies needs to be assessed throughout product development.

In vitro techniques, such as karyotyping, can be used to assess genomic integrity. More in-depth investigation may be required to detect smaller changes; however, without known associated changes, attributing risk is difficult. Q-PCR and flow cytometry can be used to determine the purity of the differentiated population and soft agar colony formation assays may also be used to assess the tumorigenic potential of the cell population100. However, all these indirect methods do not guarantee absence of tumors in the clinical setting.

Immune-deficient rodent models may be used to assess the direct tumorigenic potential of the transplanted material, with tumorigenic growth reported from as little as two undifferentiated ESCs101. Initial investigations may take place in an easily accessible and observable location with cell number determined by the planned assessment method. Once initial investigations are complete, tumorigenicity in the clinically relevant microenvironment should then be assessed with cell numbers equivalent to and higher than the predicted clinical dose. Deep tissue assessment by q-PCR or histopathological analysis is usually required to confirm ectopic tumor formation102, 103, but future investigations may utilize improvements in real-time cell tracking for greater information with regard to tumor location/development. Currently available imaging techniques suitable for clinical tumorigenic analysis include MRI for tumors >0.3cm and FDG-PET for tumors >1cm, with bioluminescent and photoacoustic imaging currently limited to pre-clinical studies104, 105. The use of biomarkers in clinical trials may also provide useful information, with raised blood alpha-fetoprotein (AFP) levels found in many teratomas106. Commonly used techniques for assessing tumorigenic potential in vitro and after clinical transplantation are presented in table 2.

Immune-deficient models lack the immune response to tumor formation. Previous reports have demonstrated a reduced capacity for tumor formation in immune-competent models when compared to immune-deficient models70, 101. Consequently, a tumor which forms in an immune-deficient model may not always form in an immune-competent model or in clinical studies.

Pre-clinical non-xenogeneic studies using animal transplant models, as shown by Hong et al.,22 (e.g. transplanting equivalent mouse iPSC-derived cells into genetically identical/non-identical mice) used in combination with in vitro assays before the development of human equivalents, may therefore be the most relevant method of assessing tumorigenicity.

Assays for the assessment of immunogenic potential

Developing relevant immunogenicity assays remains challenging. Immune-competent and immune-deficient in vivo models lack immunogenic clinical relevance for human cells in most situations; however, in some cases they can provide useful information:

- Immune-competent models may be used to investigate the use of stem cells in immune-privileged locations, such as the eye12 or as a model of allogeneic transplants.
- Immune-deficient animals varying in the extent of immune-depletion(i.e. loss of specific immune cell types) may be useful in investigating specific mechanisms of rejection107.
- Humanized models, such as the trimera mouse, have human immune cells, improving relevance108, especially for examining allogeneic grafts.
Recognizing that xenotransplantation cannot capture the human allo-immune response109, \textit{in vitro} assays such as mixed lymphocyte reactions, may be more informative of graft immunogenicity. Moreover, using the equivalent therapy in a species suitable for modelling immunogenicity, such as the non-human primate iPSC-derived transplant models reported by Morizane \textit{et al}71, may provide the most informative results, if technically and financially viable.

\textbf{IV. II Biodistribution in pre-clinical and clinical trial/assays}

Biodistribution assays inform both safety and efficacy evaluations. Whilst histopathology and PCR remain the gold standard for assessing deep tissues, here we focus on cell labelling due to its ability to monitor cell distribution/migration in real-time110. Such techniques are important for ascertaining the migratory/distribution patterns and are also informative in a tumorigenic (ectopic tumor formation) and immune (loss of cells through immune rejection) context.

Cellular imaging strategies are composed of the imaging technique and the labelling agent (figure S3). The imaging technique is usually chosen in conjunction with the labelling agent, which can be classified in two main categories: direct and indirect labelling111, summarized in table 3.

\textit{Direct Labelling}

Direct labelling requires the introduction of the labelling agents into the cells before transplantation. The relative intensity of the detected signal from the introduced molecules is then used as a surrogate for cell number.

Radionuclides used for cell imaging have different half-lives, which therefore determines the length of time cells can be monitored non-invasively110; these are mainly detected using single photon emission computed tomography (SPECT) and/or positron emission tomography (PET; table 3). Studies have shown as little as $6.2 \times 10^3 - 2.5 \times 10^4$ cells can be detected using these methods112. However, short radionuclide half-lives mean that cell-tracking is limited to hours rather than weeks. Indium-111 oxine has a relatively long half-life (~ 2.8 days)112 and has been shown to successfully track MSCs in preclinical models for up to 7 days113; however, signal leakage and alteration of cell phenotype limits translatability114. Clinically, hematopoietic stem cells labelled with 18F-FDG for acute and chronic myocardial infarction treatment were successfully tracked by PET after 20 hours115.

The use of iron oxide-labelling for MRI makes it possible to trace the cells over longer periods of time116. The most common labelling agent in pre-clinical/clinical trials is superparamagnetic iron oxide particles (SPIO), which offers the highest sensitivity and has been used to track neural stem cells in a patient for up to 3 weeks117. Generally, MRI has lower sensitivity than SPECT/PET. The number of cells used for SPIO tracking in man ranges from 3.71×10^5 to 17.4×10^6 cells118 whilst de Vries \textit{et al}, were able to detect 1.5×10^5 dendritic cells in melanoma patients119.

Alternatively, Perfluorocarbons (PFC) and Fluorine-19 (19 F) MRI can be used to track cells120. Cells are labelled with PFC emulsions before transplantation and subsequently detected as hotspots by 19 F MRI. The main advantage of this system is the low signal-to-noise ratio, due to the low endogenous 19 F concentration, allowing for the quantification of cells at an estimated minimum sensitivity of $10^4 - 10^5$ cells per voxel120. This system has been successfully exploited to monitor stem cells therapies121-123 and is promising for clinical applications with some PFCs approved by the FDA124. This system has been applied clinically in dendritic cells, with a reported minimum sensitivity of 1×10^5 cells/voxel125.

10
Indirect Labelling

Indirect labeling is the introduction of a gene encoding for a reporter recognized by a reporter probe or imaging system20. This system is highly controllable because only viable cells are able to transcribe the reporter gene126.

In MRI-based gene reporter systems, the transduced gene is typically an intracellular metalloprotein (e.g. transferrin, ferritin, tyrosinase), that traps large quantities of iron in the cytoplasm for non-invasive detection110,126. However, the trapped iron produces long-term background which masks the viability of the cell112. Some have therefore suggested that the only transduced gene currently suitable for MRI cell tracking is Lysine-rich protein127.

In the SPECT and PET reporter gene imaging systems, a gene reporter (enzyme or receptor) requires an exogenously administered probe (tracer) to localize and quantify the stem cell product.

A number of groups successfully monitored ESCs128 and MSCs129,130 in animal models, using gene reporter systems. These studies reported a reliable correlation in terms of localization, magnitude and duration of the cells in vivo when compared to conventional methods (immunohistochemistry and PCR). The short half-life of the probes allows a defined continuous imaging period of no more than a few hours128. However, being non-invasive, monitoring of the stem cells at regular intervals was possible for up to 4 weeks128-130. Quantitative information can be extrapolated from the percentage of injected radioisotope/gram of tissue, allowing for the quantification of the area(s) covered by the cells, but not the exact cell number129.

The use of indirect labelling is rare in a clinical setting as genetic manipulation is required131. However, the FDA has approved the PET reporter probe 9-[4-[18F] Fluoro-3-(hydroxymethyl) butyl]guanine ([18F]FHBG; IND #61,880)132 for the treatment of glioblastoma multiforme. Successful tracking of T-cells was reported with no significant adverse effects132. Guidelines on how to administer and safely monitor 18F-FHBG in humans have been made available134.

Optical imaging techniques are limited by exponential signal loss as depth increases, caused by scattering phenomena that occur when photons pass through the tissue110,126. Photoacoustic tomography overcomes this problem. A short laser pulse irradiates the target tissue, causing a partial absorption of the pulse energy and conversion into heat. This increases local pressure through thermo-elastic waves and is subsequently detected by ultrasonic transducers placed outside the tissue. The image is generated by collecting all thermo-elastic waves from the arrival time135,136. Such technology has been used to track human MSCs labeled with gold nanocages in a rodent model for 7 days104.

\textit{IV.III Other risks associated with the translation to the clinic}

Despite highly-controlled conditions in both cell preparations and clinical settings, infections remain a risk for patients who have received allogeneic stem cell transplants which require immunosuppression therapy137. Moreover, long-term immunosuppression has well-documented side-effects including end-organ toxicity and increased risk of cancers138.

Viral status must also be assessed in donors of allogeneic grafts. Donors of HSCs are routinely screened for hepatitis viruses, human immunodeficiency virus, cytomegalovirus and (bacterial) syphilis139,140.
Further screening for herpes simplex virus, Epstein-Barr virus and adenoviruses may also be required in addition to screening for cell type- and location-specific viruses\(^\text{140}\). Genotype screening for donor cells has also been suggested\(^\text{141}\), with some reports of specific genetic polymorphisms associated with differential GVHD severity and outcome in allogeneic HSC transplants\(^\text{142,143}\).

Scaffolds, aiding engraftment or delivery of cells, should also be considered for immunological potential. Such devices have been used to improve the survival of MSCs in brain injury models\(^\text{144,145}\) and some groups are attempting to use decellularized organs\(^\text{146}\) as 3D scaffolds for stem cell-derived repopulation\(^\text{147-149}\). Biological scaffolds offer greater similarity to the host extracellular matrix than those of synthetic origin, improving engraftment; however, they are usually xenogeneic/allogeneic\(^\text{150}\) and thus have immunogenic potential. Various techniques have been used to remove antigenic epitopes, DNA and damage-associated molecular pattern signals\(^\text{151-154}\), however, immunogenic potential remains. A comparative study of 5 commercially-available biological scaffolds demonstrated significantly elevated immune responses, including chronic inflammation and fibrosis, versus an autologous control\(^\text{155}\).

Scaffolds derived from synthetic origin are generally considered to be less immunogenic. Several synthetic biodegradable polymers have been approved by the FDA for medical applications\(^\text{156-158}\), and consequently may be used without further safety assessment. However, novel materials/uses are required to undergo safety testing in compliance with the ISO 10993 International Standard (ISO 10993: Biological evaluation of medical devices).

V. Conclusions

Stem cell therapies have immense potential to alleviate, or even cure, a range of acute, chronic and debilitating diseases. However, we must ensure that these therapies are safe as well as effective, and a lot of work still remains to be done to understand and reduce any risk associated with their use.

Huge improvements in our in vitro techniques are needed, such as ensuring gene aberration-free expansion and improved differentiation purity, alongside the better identification of risk factors which can be routinely screened before transplantation. Furthermore, the development of models which can better predict immunological responses and cell tracking techniques with increased duration and depth capabilities would represent great improvements to the current status quo.

However, the top priority is that this work must remain focused on the clinical outcome. The most important consideration is the risk-benefit assessment for the patient. Whilst a stem cell therapy, like many drugs, may not be perfectly safe, the benefit to the patient may far outweigh the potential risks. Therefore, each treatment should be determined on a case-by-case basis with regulatory input, ensuring that the risk of the therapy is appropriate for the given condition and patient.

Acknowledgements

The review article was supported by the SafeSciMet programme, a European Community project under the Innovative Medicines Initiative (IMI) Programme through Grant Agreement number 115012. Additional support was provided by the Medical Research Council Centre for Drug Safety Science (grant number G0700654) and the UK Regenerative Medicine Platform Safety Hub (grant number MR/K026739/1).
References

de Almeida PE, Meyer EH, Kooreman NG, et al. Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun. 2014;5.

Table figures

Table 1: Pluripotent stem cells clinical trials (phase I-III) listed in the International Clinical Trial Registry Platform (ICTRP) by the World Health Organization.

Table 2: Available assays to assess the tumorigenic risk of stem cell therapeutics, describing the main uses of each technique along with advantages and disadvantage.

Table 3: Comparison of technologies for stem cell graft tracking in vivo. Further reviewed by James and Gambhir. QD quantum dots; G/RFP, green or red fluorescent protein.

Supplementary figure legends

Figure S1: Therapeutic risks of stem cells. Risk of stem cell therapeutics can be divided into 3 main categories: biodistribution: cell migration, distribution, engraftment and long-term survival; immunogenicity: graft-vs-host disease and other inflammatory/fibrotic conditions; tumorigenicity: genomic aberrations or insertions, cell purity (i.e. transplanted population containing iPSCs/ESCs with inherent teratoma potential) and cell of origin (i.e. the reduced risk of tumorigenicity with ASCs.
compared to iPSCs/ESCs, ESCs compared to iPSCs, and neonatal compared with adult cell-derived iPSCs).

Figure S2: Schematic demonstrating the described potential mechanisms of immune recognition and rejection of stem cell grafts. (1) **HLA-I incompatibility.** CD8+ cytotoxic T-cells recognize non-self HLA (and co-stimulatory molecules) and initiate an immune response that can lead to rejection. (2) **HLA-II incompatibility.** HLA-II-expressing antigen-presenting cells, present to CD4+ T helper cells resulting in cytokine-induced inflammation and/or activation of B or T cell responses. (3) **Minor histocompatibility complex (mHC) incompatibility.** A selection of proteins expressed in the cell, including mitochondria derived proteins, may bind to and be presented by HLA-I. These can be recognized as mHC antigens, and lead to immune-rejection. (4) **ABO blood group antigen incompatibility.** ABO blood group antigens can be detected by antibodies and activate the complement system. (5) **Natural killer (NK) cells** can also contribute to immune rejection.160

Figure S3: Stem cell imaging/tracking. Direct labelling of cells requires exposure to labels such as quantum dots, which enter the cytoplasm and can be detected via MRI, PET, SPECT or fluorescent imaging depending on the technique. Indirect labelling requires genetic modification of the cell to insert a reporter gene, which is then detected by the appropriate imaging technique. Details of each technique are listed in table 3. **SPIONs:** Superparamagnetic iron oxide nanoparticles.
Figure S1: Therapeutic risks of stem cells. Risk of stem cell therapeutics can be divided into 3 main categories: biodistribution: cell migration, distribution, engraftment and long-term survival; immunogenicity: graft-vs-host disease and other inflammatory/fibrotic conditions; tumorigenicity: genomic aberrations or insertions, cell purity (i.e. transplanted population containing iPSCs/ESCs with inherent teratoma potential) and cell of origin (i.e. the reduced risk of tumorigenicity with ASCs compared to iPSCs/ESCs, ESCs compared to iPSCs, and neonatal compared with adult cell-derived iPSCs).
Figure S2: Schematic demonstrating the described potential mechanisms of immune recognition and rejection of stem cell grafts. (1) HLA-I incompatibility. CD8+ cytotoxic T-cells recognize non-self HLA (and co-stimulatory molecules) and initiate an immune response that can lead to rejection. (2) HLA-II incompatibility. HLA-II-expressing antigen-presenting cells, present to CD4+ T helper cells resulting in cytokine-induced inflammation and/or activation of B or T cell responses. (3) Minor histocompatibility complex (mHC) incompatibility. A selection of proteins expressed in the cell, including mitochondria derived proteins, may bind to and be presented by HLA-I. These can be recognized as mHC antigens, and lead to immune-rejection. (4) ABO blood group antigen incompatibility. ABO blood group antigens can be detected by antibodies and activate the complement system. (5) Natural killer (NK) cells can also contribute to immune rejection.
Figure S3: Stem cell imaging/tracking. Direct labelling of cells requires exposure to labels such as quantum dots, which enter the cytoplasm and can be detected via MRI, PET, SPECT or fluorescent imaging depending on the technique. Indirect labelling requires genetic modification of the cell to insert a reporter gene, which is then detected by the appropriate imaging technique. Details of each technique are listed in table 3. SPIONs: Superparamagnetic iron oxide nanoparticles.