QoS Considerations for Full Duplex Multiuser MIMO Systems

Ali Cagatay Cirik, Member, IEEE, Omid Taghizadeh, Student Member, IEEE, Rudolf Mathar, Member, IEEE, and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—We consider a full-duplex (FD) multiuser multiple-input multiple-output (MIMO) system where the base-station (BS) serves multiple uplink (UL) and downlink (DL) users simultaneously. We address the quality-of-service (QoS) problem in which the transmitted sum-power at the BS and UL users is minimized subject to minimum rate constraints at each user of the system. We first propose a centralized solution based on sequential convex programming (SCP), and then propose a distributed solution by using interference prices exchanged among the nodes to represent the cost of received interference. The proposed designs are evaluated via numerical simulations.

Index Terms—Full-duplex, MIMO, multi-user, quality-of-service.

I. INTRODUCTION

In current wireless communication systems, downlink (DL) and uplink (UL) channels are designed to operate in orthogonal channels. Full-duplex (FD) communication, which enables UL and DL communication at the same time slot on the same frequency, is a promising technique to double the spectral efficiency. Although there are several designs to deal with the self-interference inherent in FD radios, due to the imperfections of radio devices, the self-interference cannot be canceled completely in reality. Therefore, resource allocation problems for FD multi-user systems, in which a FD capable base-station (BS) communicates with half-duplex (HD) UL and DL users, under the residual self-interference were considered in [1]–[5]. The authors in [1]–[3] have focused on the maximization of the achievable rate and have not addressed the issue of Quality-of-Service (QoS). However, in most practical cases, each user has a desired data rate and likes to achieve it within the available power. Thus, it is also an important problem to guarantee all the UL and DL users’ desired data rates in a cellular system while consuming minimum power. Transmit power minimization is also important to extend battery life, which is desirable with battery-powered nodes [6]. In [4] and [5], the authors study the QoS problem for UL and DL channels separately for single-antenna users, but the proposed algorithms do not provide a closed-form solution.

In this work, we propose a precoder scheme for the FD multiple-input multiple-output (MIMO) multi-user system to minimize the total transmitted power at the BS and UL users subject to a pre-determined data rate constraint at each user of this system as a QoS measure. We propose a centralized algorithm, where the non-convex optimization problem is approximated in each iteration with a known convex structure. We also propose a distributed algorithm, based on the exchange of interference prices among the nodes which represent the cost for the interference a node receives from other nodes, similar to the algorithm in [7] proposed for HD systems. Our approach differs from the distributed algorithm in [8], which treats the multiple transmitter beams separately. Furthermore, unlike [4], [5] and [8], we provide a closed-form solution for the transmit covariance matrices which depends on the pricing values exchanged. Simulation results show the behavior of the proposed designs, in comparison with an equivalent HD system. It is observed that for both centralized and distributed designs, the FD solutions outperform the corresponding HD counterparts for the achievable values of self-interference cancellation quality.

Notation: Matrices and vectors are denoted as bold capital and lowercase letters, respectively. $(\cdot)^T$ is the transpose, and $(\cdot)^H$ is the conjugate transpose. I_N is the N by N identity matrix, $\text{tr}(\cdot)$ is the trace, $|\cdot|$ is the determinant, and $\|\cdot\|_{F_0}$ is the Frobenius norm of a matrix. $\mathbb{C}^{M \times N}$ denotes the set of complex matrices with a dimension of $M \times N$, $(x)^+ = \max\{x, 0\}$, and \otimes denotes the Kronecker product.

II. SYSTEM MODEL

We consider a multi-user MIMO system, in which a BS equipped with M_0 and N_0 transmit and receive antennas serves K UL and J DL users simultaneously. The number of antennas at the k-th UL and the j-th DL user are M_k and N_j, respectively. $\mathbf{H}^{UL}_{kj} \in \mathbb{C}^{N_0 \times M_k}$ and $\mathbf{H}^{DL}_{j} \in \mathbb{C}^{N_j \times M_0}$ represent the k-th UL and the j-th DL channel, respectively. $\mathbf{H}_0 \in \mathbb{C}^{N_0 \times M_0}$ is the self-interference channel at the BS. $\mathbf{H}^{DL}_{jk} \in \mathbb{C}^{N_j \times M_k}$ denotes the co-channel interference (CCI) channel from the k-th UL user to the j-th DL user.\(^1\)

\(^1\)We assume that the perfect channel state information (CSI) of the channels is available at the BS. All the channels can be estimated using hand-shaking and pilot symbols [5]. Since the pilot signal of a FD node is echoed back to itself, and the received power of this echoed-backed pilot signal is very high, the self-interference channel can be estimated with high accuracy.
The signal-to-interference-plus-noise-ratio (SINR).

The received signals are processed by linear decoders, and the SINR values of the m-th stream of the k-th UL user are given as

$$H_{ij}(\bar{V}) = H_{ij}(\bar{V}) = H_{ij}^H X_j,$$

where $\bar{V} = \{V_i : i \in S\}$ and R_i is the desired rate at the i-th user in bits/second/Hz.

III. Centralized Design

In this part, we propose a centralized design strategy to solve (8)–(9) to evaluate an optimal performance of the network, and to act as a comparison benchmark. In order to deal with the non-convex problem (8)–(9), we follow a sequential convex programming (SCP) [10], where the problem is approximated as a convex optimization problem in each iteration. The sequential problem in the ℓ-th iteration can be hence formulated as

$$\min_{\bar{V}} \sum_{i \in S} \text{tr} \left(V_i^H V_i \right)$$

s.t. $\log_2 \left(1 + \gamma_{k,m} \right) \geq R_k^{UL}, \ k \in S^{UL},$ (4)

where $\bar{V} = \{V_i : i \in S\}$ and R_i is the desired rate at the i-th user in bits/second/Hz.

The QoS based optimization problem is formulated as follows

$$\min_{\bar{V}, \tilde{V}, u_0} \sum_{k=1}^K \sum_{m=1}^{d^{UL}} \left(1 + \gamma_{k,m} \right) \geq R_k^{UL}, \ k \in S^{UL},$$

s.t. $\text{tr} \left(V_i^H V_i \right) \geq R_i, \ i \in S,$ (5)

\tilde{V}: QoS CONSIDERATIONS FOR FULL DUPLEX MULTIUSER MIMO SYSTEMS 37
where (11) represents the first order Taylor series approximation of the rate constraints, and δ holds the extension in which the applied Taylor approximation is valid and will be set numerically. $\Gamma_{i,j,\ell}$ is the conjugate gradient of the i-th rate function with respect to the j-th precoder, at iteration ℓ:

$$\Gamma_{i,j,\ell} := \frac{\partial I_{i,\ell}}{\partial V_{j,\ell}} V_{i,\ell-1}, \forall i \in S$$

$$= \begin{cases} \frac{1}{\ln 2} H_{ii}^{H} \Sigma_{i,\ell-1}^{-1} A_{i,\ell-1}^{-1} H_{ii} V_{i,\ell-1}, & i = j, \\ \frac{1}{\ln 2} H_{ij}^{H} \left[\Sigma_{i,\ell-1}^{-1} - \left(\Sigma_{i,\ell-1} + H_{ii} V_{i,\ell-1} V_{i,\ell-1}^{H} H_{ii}^{H} \right)^{-1} \right] \times H_{ij} V_{j,\ell-1}, & i \neq j, \end{cases}$$

(13)

where $A_{i,\ell} := I + H_{ii} V_{i,\ell} V_{i,\ell}^{H} H_{ii}^{H} \Sigma_{i,\ell}^{-1}$. The iterations of SCP continues until a local optimum point is achieved. While the proposed SCP solution does not guarantee the global optimality, the optimization process is repeated for multiple initial and feasible points to approach, with higher confidence, a globally optimal solution. Note that the Taylor series approximation holds with enough accuracy if the value of δ is chosen small enough such that the Taylor approximation remains valid within the feasible set of (10)–(12) [10].

IV. DISTRIBUTED DESIGN

Since the complexity of the centralized algorithm increases substantially with the increased number of users, it is important to implement a distributed algorithm which requires a limited amount of information exchange between the links.

Denoting $Q_i \triangleq V_i V_i^{H}$ as the source covariance matrix of the i-th link, the problem (8)–(9) can be rewritten as

$$\min_{Q_i \succeq 0, \ i \in S} \sum_{i \in S} \text{tr} \left\{ Q_i \right\}$$

s.t. $\log_2 \left| I + H_{ii} Q_i H_{ii}^{H} \Sigma_i^{-1} \right| \geq R_i, \ i \in S$. (15)

The Karush-Kuhn-Tucker (KKT) conditions associated with the problem (14)–(15) for the i-th link is given by

$$\frac{\partial \mathcal{L}(\tilde{Q}, \tilde{\mu}, \tilde{G})}{\partial Q_i} = 0, \ \text{tr} \left\{ G_i Q_i \right\} \geq 0, \ \mu_i \geq 0, \ G_i \succeq 0,$$

$$\mu_i \left[\log_2 \left| I + H_{ii} Q_i H_{ii}^{H} \Sigma_i^{-1} \right| - R_i \right] \geq 0,$$

(16)

(17)

where μ_i and G_i are the Lagrange multipliers for the constraint given in (15) and semidefiniteness constraint of Q_i, respectively. In (16) $\tilde{\mu}$, \tilde{G}, and \tilde{Q} are obtained by stacking μ_i, G_i, and Q_i, $i \in S$, respectively. Here $\mathcal{L}(\tilde{Q}, \tilde{\mu}, \tilde{G})$ denotes the Lagrangian function, given as

$$\mathcal{L}(\tilde{Q}, \tilde{\mu}, \tilde{G}) = \sum_{i \in S} \text{tr} \left\{ \left(I - G_i \right) Q_i \right\} + \sum_{i \in S} \mu_i \left(R_i - l_i(\tilde{Q}) \right).$$

By taking the derivative of $\mathcal{L}(\tilde{Q}, \tilde{\mu}, \tilde{G})$ with respect to Q_i and then using the property $\frac{\partial \text{tr} \left\{ AX \right\}}{\partial X} = A^T$, we have

$$\frac{\partial \mathcal{L}(\tilde{Q}, \tilde{\mu}, \tilde{G})}{\partial Q_i} = \frac{\partial}{\partial Q_i} \text{tr} \left\{ I + \sum_{j \in S, j \neq i} \mu_j H_{jj}^{H} \Pi_j H_{jj} \right\} Q_i - \frac{\partial}{\partial Q_i} \mu_i I_i(\tilde{Q}),$$

$$= -\frac{\partial}{\partial Q_i} \mu_i l_i(\tilde{Q}) - \frac{\partial}{\partial Q_i} \text{tr} \left\{ G_i Q_i \right\},$$

where the interference sensitivity matrix, Π_j is defined as

$$\Pi_j = \log_2 \left(\Sigma_j^{-1} - (H_{jj} Q_j H_{jj}^{H} + \Sigma_j)^{-1} \right).$$

(18)

Since the KKT conditions corresponding to the i-th link are coupled with all other links, which increases the difficulty of the problem, a distributed algorithm is proposed, in which the source covariance matrix of each link is optimized under the assumption that the interference sensitivity matrices, and the source covariance matrix of all other links are fixed [7]. Under this assumption, the KKT conditions in (16)–(17), are actually the same as the KKT conditions of the following problem:

$$\min_{Q_i \succeq 0} \text{tr} \left\{ B_i Q_i \right\}$$

s.t. $\log_2 \left| I + H_{ii} Q_i H_{ii}^{H} \Sigma_i^{-1} \right| \geq R_i, \ i \in S$. (15)

where $B_i = I + \sum_{j \in S, j \neq i} \mu_j H_{jj}^{H} \Pi_j H_{jj}$. The pricing matrix reflecting the compensation paid for the interference generated to other links. Note that unlike the global CSI assumption in the centralized method, in the distributed algorithm, to obtain B_i, CSI must be only locally available at the transmitters, i.e., each transmitter needs to know only the CSI of the links originating from itself. The receiver at each link is able to obtain Σ_i locally through measurements [3].

The optimization problem (19)–(20) is a convex problem, which can be solved separately for each link, provided that the other links send the Lagrange multiplier for the rate constraint μ_j and the interference sensitivity matrices Π_j. As the value of μ_i acts as the penalty weight regarding the corresponding rate constraint, it can be intuitively chosen as

$$\mu_i = \left[\left(R_i - l_i(\tilde{Q}) \right) / R_i \right]^+, \ \forall i \in S,$$

(21)

which indicates that only paths with unsatisfied rate constraint will contribute to interference pricing term, proportional to the corresponding rate deficiency.

To solve (19)–(20), we first define the following matrix

$$\tilde{Q}_i = U_i^{H} B_i^{-1/2} Q_i B_i^{1/2} U_i,$$

(22)

where U_i is a unitary matrix obtained by the eigenvalue decomposition of

$$B_i^{-1/2} H_{ii}^{H} \Sigma_i^{-1} H_{ii} B_i^{-1/2} = U_i A_i U_i^{H}.$$

(23)

In (23), A_i is a diagonal matrix containing the corresponding eigenvalues, $\lambda_i, m = 1, \ldots, M$, and M is the number of antennas of the transmitter in the i-th link. Since U_i is a unitary matrix, from (22) we can write \tilde{Q}_i as

$$\tilde{Q}_i = B_i^{-1/2} U_i \tilde{Q}_i U_i^{H} B_i^{-1/2}.$$

(24)

By plugging (24) into the objective function (19), we have

$$\text{tr} \left\{ B_i Q_i \right\} = \text{tr} \left\{ \tilde{Q}_i \right\}.$$
Moreover, plugging (24) into the data rate constraint in (20), and then using (23) in the resulting equation, we get
\[
\log_2 \left| 1 + \hat{Q}_i \hat{A}_i \right| = \log_2 \left| 1 + \hat{Q}_i \hat{A}_i \right|.
\]
To maximize the term \(\log_2 \left| 1 + \hat{Q}_i \hat{A}_i \right| \), from the Hadamard inequality, \(\hat{Q}_i \) must be diagonal \([11]\). Thus, the problem (19)–(20) reduces to the following problem
\[
\min_{\hat{q}_{i,m} \geq 0, \nu_m} \sum_{m=1}^{M} \hat{q}_{i,m} \quad \text{s.t.} \quad \sum_{m=1}^{M} \log_2 \left(1 + \hat{q}_{i,m} \lambda_{i,m} \right) \geq R_i,
\]
where \(\hat{q}_{i,m} \), \(m = 1, \ldots, M \) is the \(m \)-th diagonal element of \(\hat{Q}_i \). The solution of the problem (26) is written as
\[
\hat{q}_{i,m} = \left(v_i \frac{1}{\lambda_{i,m}} \right)^+,
\]
where \(v_i \) is the water level adjusted to satisfy the user rate constraint (26). Once \(\hat{Q}_i \) is computed using (27), the source covariance matrix, \(Q_i \), can be computed from (24).

Note that in the distributed method, both computation task and the network data exchange load is distributed. This becomes an important factor when network size grows.

V. SIMULATION RESULTS

In this section, the consumed network power is depicted for the proposed centralized (SCP) and the distributed (Dist) methods under the 3GPP LTE specifications for small cell deployments \([12]\). A single hexagonal cell having a BS in the center with randomly distributed UL and DL users is simulated. The parameters for the system model and the path-loss model for each link are adopted from \([12]\). Please see \([12, Table 6.2-1]\) for the detailed simulation parameters.

For the self-interference channel, we adopt the model in \([13]\), which demonstrates that the Rician probability distribution with a small Rician factor should be used to characterize the residual self-interference channel after self-interference cancellation mechanisms. In this regard, the self-interference channel is distributed as \(H_0 \sim \mathcal{CN} \left(\frac{\sigma^2_{SI} K_R}{1+K_R}, \frac{\sigma^2_{SI}}{1+K_R} I_{N_0} \otimes I_{M_0} \right) \), where \(K_R \) is the Rician factor, \(\hat{H}_0 \) is a deterministic matrix, and \(\sigma^2_{SI} \) is introduced to parametrize the capability of a certain self-interference cancellation design. The resulting system performance is averaged over 200 full-rank channel realizations. We apply the following values as our default system parameters: \(\sigma^2_{SI} = -100 \) dB, \(K_R = 1 \), \(M_k = N_j = d_{DL}^L = 2 \), \(M_0 = N_0 = d_{UL}^L = 2 \), \(K = J = 2 \), and \(\hat{H}_0 \) is a matrix of all ones.

In Fig. 1, it is observed that the system power consumption is increased for the higher rate requirements, and the HD setup is outperformed by the FD setup for both centralized and distributed solutions. Moreover, since the self-interference power is weaker compared to the CCI power on the average, the DL channel consumes more power than the UL channel to achieve the same data rate constraint.

VI. CONCLUSION

We have proposed a centralized and a distributed algorithm for the QoS problem in a cellular FD MIMO system. It is shown that FD system consumes less power than the HD system under achieved self-interference cancellation levels for both centralized and distributed algorithms.

REFERENCES