Obstruent voicing, aspiration, and tone

Citation for published version:
Kirby, J 2016, 'Obstruent voicing, aspiration, and tone' LabPhon 15, Ithaca, United States, 13/07/16 - 16/07/16,

Link:
Link to publication record in Edinburgh Research Explorer

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
INTRODUCTION

CF0: F0 of vowels is higher following voiceless stops

- Extensively investigated in languages with 2-way contrasts (Lehiste and Peterson 1961, Kingston and Diehl 1994, Hanson 2009 etc.)
- What about languages with 3-way contrasts (which tend to be tonal)?
- Previous studies on tonal languages are inconsistent, e.g.:

<table>
<thead>
<tr>
<th>Study</th>
<th>Subj.</th>
<th>Methods</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai</td>
<td>11 (6 F)</td>
<td>F0 @ vowel onset</td>
<td>C > C\text{h}</td>
</tr>
<tr>
<td>Erickson</td>
<td>2 (M)</td>
<td>F0 @ “onset”</td>
<td>C > C\text{h}</td>
</tr>
<tr>
<td>Shimizu</td>
<td>7 (all F)</td>
<td>F0 @ 1st vocal cycle</td>
<td>C > C\text{h}</td>
</tr>
<tr>
<td>Lai et al.</td>
<td>10 (5 F)</td>
<td>F0 @ 10% incr.</td>
<td>C > C\text{h}</td>
</tr>
<tr>
<td>Cantonese</td>
<td>16 (8 F)</td>
<td>F0 @ 1st cycle + 10 ms</td>
<td>C > C\text{h}</td>
</tr>
</tbody>
</table>

Khmer

(Austroasiatic)
14 speakers (5 F)
Non-tonal
5 tones (F0)

Thai

(Kra-Dai)
12 speakers (6 F)
Non-tonal
6 tones (F0 + VQ)

Vietnamese

(Austroasiatic)
14 speakers (6 F)
Non-tonal
6 tones (F0 + VQ)

- Single set of materials across all three languages
- Sonorants as reference level
- Isolation + carrier contexts
- Compare F0 with GAMs (Wood, 2006)

MATERIALS & METHODS

Khmer

13-16 July 2016

Thai

LabPhon 15
Cornell University

Questions

1. Do both C and C\text{h} actually raise CF0?
2. Is attenuation the same in different tonal contexts?

RESULTS

DISCUSSION

- Further evidence that CF0 not related to VOT: language/speaker-specific function of how/whether active devoicing is implemented (Kingston & Diehl, 1994; Hanson, 2009; Dmitrieva et al., 2015; etc)
- Tone qua tone tends to come from finals. CF0 primarily involved in conditioning **tonal splits.** If CF0 is actively suppressed, this is mysterious
- Alternative: with fewer tones, timing of laryngeal gestures determining tonal pitch targets may be less precise/more flexible, but with CF0 still prominent (cf. Lai et al., 2009)
- Aerodynamic component? (Kohler, 1985; Xu & Xu, 2003)

<table>
<thead>
<tr>
<th>Khmer, isolation condition</th>
<th>Thai, high-falling</th>
<th>Vietnamese, isolation, high-level tone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Khmer</th>
<th>Thai</th>
<th>Vietnamese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

1. C\text{h} always raises CF0, implying active devoicing
2. C sometimes raises CF0 (speaker/language-dependent)
3. There is no evidence of C > C\text{h} for any speakers
4. CF0 is not universally attenuated in tone languages: language, context, and tone may all play a role

Research assistance: Jasmine 李 映 Sung
References: available upon request