HUME: Human UCCA-Based Evaluation of Machine Translation

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
HUME: Human UCCA-Based Evaluation of Machine Translation

Alexandra Birch¹, Omri Abend²*, Ondřej Bojar³*, Barry Haddow¹*

¹School of Informatics, University of Edinburgh
²School of Computer Science and Engineering, Hebrew University of Jerusalem
³Charles University in Prague, Faculty of Mathematics and Physics

a.birch@ed.ac.uk, oabend@cs.huji.ac.il
bojar@ufal.mff.cuni.cz, bhaddow@inf.ed.ac.uk

Abstract

Human evaluation of machine translation normally uses sentence-level measures such as relative ranking or adequacy scales. However, these provide no insight into possible errors, and do not scale well with sentence length. We argue for a semantics-based evaluation, which captures what meaning components are retained in the MT output, thus providing a more fine-grained analysis of translation quality, and enabling the construction and tuning of semantics-based MT. We present a novel human semantic evaluation measure, Human UCCA-based MT Evaluation (HUME), building on the UCCA semantic representation scheme. HUME covers a wider range of semantic phenomena than previous methods and does not rely on semantic annotation of the potentially garbled MT output. We experiment with four language pairs, demonstrating HUME’s broad applicability, and report good inter-annotator agreement rates and correlation with human adequacy scores.

1 Introduction

Human judgement should be the ultimate test of the quality of an MT system. Nevertheless, common measures for human MT evaluation, such as adequacy and fluency judgements or the relative ranking of possible translations, are problematic in two ways. First, as the quality of translation is multifaceted, it is difficult to quantify the quality of the entire sentence in a single number. This is indeed reflected in the diminishing inter-annotator agreement (IAA) rates of human ranking measures with the sentence length (Bojar et al., 2011). Second, a sentence-level quality score does not indicate what parts of the sentence are badly translated, and so cannot inform developers in repairing these errors.

These problems are partially addressed by measures that decompose over parts of the evaluated translation, often words or n-grams (see §2 for a brief survey of previous work). A promising line of research decomposes metrics over semantically defined units, quantifying the similarity of the output and the reference in terms of their verb argument structure; the most notable of these measures is HMEANT (Lo and Wu, 2011).

We propose the HUME metric, a human evaluation measure that decomposes over UCCA semantic units. UCCA (Abend and Rappoport, 2013) is an appealing candidate for semantic analysis, due to its cross-linguistic applicability, support for rapid annotation, and coverage of many fundamental semantic phenomena, such as verbal, nominal and adjectival argument structures and their inter-relations.

HUME operates by aggregating human assessments of the translation quality of individual semantic units in the source sentence. We are thus avoiding the semantic annotation of machine-generated text, which is often garbled or semantically unclear. This also allows the re-use of the source semantic annotation for measuring the quality of different translations of the same source sentence and avoids relying on reference translations, which have been shown to bias annotators (Fomicheva and Specia, 2016).

After a brief review (§2), we describe HUME in...
Our experiments with four language pairs: English to Czech, German, Polish and Romanian document HUME’s inter-annotator agreement and efficiency (time of annotation). We further empirically compare HUME with direct assessment of human adequacy ratings (§5), and conclude by discussing the differences with HMEANT (§6).

2 Background

MT Evaluation. Human evaluation is generally done by ranking the outputs of multiple systems e.g., in the WMT tasks (Bojar et al., 2015), or by assigning adequacy/fluency scores to each translation, a procedure recently improved by Graham et al. (2015b) under the title Direct Assessment. We use this latter method to compare and contrast with HUME later in the paper. HTER (Snover et al., 2006) is another widely used human evaluation metric which uses edit distance metrics to compare a translation and its human post-edition. HTER suffers from the problem that small edits in the translation could in fact be serious flaws in accuracy, e.g., deleting a negation. Some manual measures ask annotators to explicitly mark errors, but this has been found to have even lower agreement than ranking (Lommel et al., 2014).

However, while providing the gold standard for MT evaluation, human evaluation is not a scalable solution. Scalability is addressed by employing automatic and semi-automatic approximations of human judgements. Commonly, such scores decompose over the sub-parts of the translation, and quantify how many of these sub-parts appear in a manually created reference translation. This decomposition allows system developers to localize the errors. The most commonly used measures decompose over n-grams or individual words, e.g., BLEU (Papineni et al., 2002), NIST (Doddington, 2002) and METEOR (Banerjee and Lavie, 2005). Another common approach is to determine the similarity between the reference and translation in terms of string edits (Snover et al., 2006). While these measures stimulated much progress in MT research by allowing the evaluation of massive-scale experiments, the focus on words and n-grams does not provide a good estimate of semantic correctness, and may favour shallow string-based MT models.

Perhaps the most notable attempt at semantic MT evaluation is MEANT and its human variant HMEANT (Lo and Wu, 2011), which quantifies the similarity between the reference and translation in terms of their semantic (predicate-argument structures), lexical and morphosyntactic features. Macháček and Bojar (2015) divided the source sentences into shorter segments, defined using a phrase structure parse, and applied human ranking to the resulting segments.

In order to address this shortcoming, more recent work quantified the similarity of the reference and translation in terms of their structure. Liu and Gildea (2005) took a syntactic approach, using dependency grammar, and Owczarzak et al. (2007) took a similar approach using Lexical Functional Grammar structures. Giménez and Márquez (2007) proposed to combine multiple types of information, capturing the overlap between the translation and reference in terms of their semantic (predicate-argument structures), lexical and morphosyntactic features. Macháček and Bojar (2015) divided the source sentences into shorter segments, defined using a phrase structure parse, and applied human ranking to the resulting segments.

Semantic Representation. UCCA (Universal Conceptual Cognitive Annotation) (Abend and Rappoport, 2013) is a cross-linguistically applicable scheme for semantic annotation. Formally, an UCCA structure is a directed acyclic graph (DAG), whose leaves correspond to the words of the text. The graph’s nodes, called units, are either terminals or several elements jointly viewed as a single entity according to some semantic or cognitive consideration. Edges bear a category, indicating the role of the sub-unit in the structure the unit represents.

UCCA’s basic inventory of distinctions (its foundational layer) focuses on argument structures (ad-
jectival, nominal, verbal and others) and relations between them. The most basic notion is the Scene, which describes a movement, an action or a state which persists in time. Each Scene contains one main relation and zero or more participants. For example, the sentence “After graduation, Tom moved to America” contains two Scenes, whose main relations are “graduation” and “moved”. The participant “Tom” is a part of both Scenes, while “America” only of the latter (Figure 1). Further categories account for inter-scene relations and the sub-structures of participants and relations.

The use of UCCA for semantic MT evaluation has several motivations. First, UCCA’s foundational layer can be annotated by non-experts after a short training (Abend and Rappoport, 2013; Marinotti, 2014). Second, UCCA is cross-linguistically applicable, seeking to represent what is shared between languages by building on linguistic typological theory (Dixon, 2010b; Dixon, 2010a; Dixon, 2012). Its cross-linguistic applicability has so far been tested in annotations of English, French, German and Czech. Third, the scheme has been shown to be stable across translations: UCCA annotations of translated text usually contain the same set of relations (Sulem et al., 2015), indicating that UCCA reflects a layer of representation that in a correct translation is mostly shared between the translation and the source.

The Abstract Meaning Representation (AMR) (Banarescu et al., 2013) shares UCCA’s motivation for defining a more complete semantic annotation. However, using AMR is not optimal for defining a decomposition of a sentence into semantic units as it does not anchor its semantic symbols in the text, and thus does not provide clear decomposition of the sentence into sub-spans. Also, AMR is more fine-grained than UCCA and consequently harder to annotate. Other approaches represent semantic structures as bi-lexical dependencies (Sgall et al., 1986; Hajić et al., 2012; Oepen and Lönnning, 2006), which are indeed anchored in the text, but are less suitable for MT evaluation as they require linguistic expertise for their annotation.

3 The HUME Measure

3.1 Annotation Procedure

This section summarises the manual annotation procedure used to compute the HUME measure. We denote the source sentence as s and the translation as t. The procedure involves two manual steps: (1) UCCA-annotating s, (2) HUME-annotation: human judgements as to the translation quality of each semantic unit of s relative to t, where units are defined according to the UCCA annotation. UCCA annotation is performed once for every source sentence, irrespective of the number of its translations we wish to evaluate, and requires proficiency in the source language only. HUME annotation requires the employment of bilingual annotators.¹

UCCA Annotation. We begin by creating UCCA annotations for the source sentence, following the UCCA guidelines.² A UCCA annotation for a sentence s is a labeled DAG G, whose leaves are the words of s. For every node in G, we define its yield to be its leaf descendants. The semantic units for s according to G are the yields of nodes in G.

Translation Evaluation. HUME annotation is done by traversing the semantic units of the source sentence, which correspond to the arguments and relations expressed in the text, and marking the extent to which they have been correctly translated. HUME aggregates the judgements of the users into a composite score, which reflects the overall extent to which the semantic content of s is preserved in t.

Annotation of the semantic units requires first deciding whether a unit is structural, i.e., has meaning-bearing sub-units in the target language, or atomic. In most cases, atomic units correspond to individual words, but they may also correspond to multi-word expressions that translate as one unit. For instance, the expression “took a shower” is translated into the German “duschte”, while its individual words do not correspond to any sub-part of the German translation, motivating the labeling the entire expression as an atomic node. When a multi-word unit is labeled

¹Where bilingual annotators are not available, the evaluation could be based on the UCCA structure for the reference translation. See discussion in §6.

²All UCCA-related resources can be found here: http://www.cs.huji.ac.il/~oabend/ucca.html
Figure 2: HUME annotation of an UCCA tree with a word-aligned example translation shown below. Atomic units are labelled using traffic lights (Red, Orange, Green) and structural units are marked A or B.

as atomic, its sub-units’ annotations are ignored in the evaluation.

Atomic units can be labelled as “Green” (G, correct), “Orange” (O, partially correct) and “Red” (R, incorrect). Green means that the meaning of the word or phrase has been largely preserved. Orange means that the essential meaning of the unit has been preserved, but some part of the translation is wrong. This is often due to the translated word having the wrong inflection, in a way that impacts little on the understandability of the sentence. Red means that the essential meaning of the unit has not been captured.

Structural units have sub-units (children in the UCCA graph), which are themselves atomic or structural. Structural units are labeled as “Adequate” (A) or “Bad” (B), meaning that the relation between the sub-units went wrong. We will use the example “man bites dog” to illustrate typical examples of why a structural node should be labelled as “Bad”: incorrect ordering (“dog bites man”), deletion (“man bites”) and insertion (“man bites biscuit dog”).

HUME labels reflect adequacy, rather than fluency judgements. Specifically, annotators are instructed to label a unit as Adequate if its translation is understandable and preserves the meaning of the source unit, even if its fluency is impaired.

Figure 2 presents an example of a HUME annotation, where the translation is in English for ease of comprehension. When evaluating “to America” the annotator looks at the translation and sees the word “stateside”. This word captures the whole phrase and so we mark this non-leaf node with an atomic label. Here we choose Orange since it approximately captures the meaning in this context. The ability to mark non-leaves with atomic labels allows the annotator to account for translations which only correspond at the phrase level. Another feature highlighted in this example is that by separating structural and atomic units, we are able to define where an error occurs, and localise the error to its point of origin. The linker “After” is translated incorrectly as “by” which changes the meaning of the entire sentence. This error is captured at the atomic level, and it is labelled Red. The sentence still contains two Scenes and a Linker and therefore we mark the root node as structurally correct, Adequate.

3.2 Composite Score

We proceed to detailing how judgements on the semantic units of the source are aggregated into a composite score. We start by taking a very simple approach and compute an accuracy score. Let $Green(s, t)$, $Adequate(s, t)$ and $Orange(s, t)$ be the number of Green, Adequate and Orange units, respectively. Let $Units(s)$ be the number of units marked with any of the labels. Then HUME’s composite score is:

$$HUME(s, t) = \frac{Green(s, t) + Adequate(s, t) + 0.5 \cdot Orange(s, t)}{Units(s)}$$

3.3 Annotation Interface

Figure 3 shows the HUME annotation interface. One source sentence and one translation are presented at a time. The user is asked to select a label for each source semantic unit, by clicking the “A”, “B”, Green, Orange, or Red buttons to the right of the unit’s box. Units with multiple parents (as with “Tom” in Figure 2) are displayed twice, once under each of their parents, but are only annotatable in one of their instances, to avoid double counting.

The interface presents, for each unit, the translation segment aligned with it. This allows the user, especially in long sentences, to focus her attention on the parts that are most likely to be relevant for her judgement. As the alignments are automatically derived, and therefore noisy, the annotator is instructed to treat the aligned text as a cue, but to ignore the alignment if it is misleading, and instead make a

3 Three labels are used with atomic units, as opposed to two labels with structural units, as atomic units are more susceptible to slight errors.

4 A demo of HUME can be found in www.cs.huji.ac.il/~oabend/hume_demo.html
judgement according to the full translation. Concretely, let \(s \) be a source sentence, \(t \) a translation, and \(A \subseteq 2^s \times 2^t \) a many-to-many word alignment. If \(u \) is a semantic unit in \(s \), whose yield is \(yld(u) \), we define the aligned text in \(t \) to be \(\bigcup \{ (x_s, x_t) \in A \mid x_s \cap yld(u) \neq \emptyset \} \).

Where the aligned text is discontinuous in \(t \), words between the left and right boundaries which are not contained in it (intervening words) are presented in a smaller red font. Intervening words are likely to change the meaning of the translation of \(u \), and thus should be attended to when considering whether the translation is correct or not.

For example, in Figure 3, “ongoing pregnancy” is translated to “Schwangerschaft ... laufenden” (lit. “pregnancy ... ongoing”). This alone seems acceptable but the interleaving words in red notify the annotator to check the whole translation, in which the meaning of the expression is not preserved\(^5\). The annotator should thus mark this structural node as Bad.

4 Experiments

In order to validate the HUME metric, we ran an annotation experiment with one source language (English), and four target languages (Czech, German, Polish and Romanian), using text from the public health domain. Semantically accurate translation is paramount in this domain, which makes it particularly suitable for semantic MT evaluation. HUME is evaluated in terms of its consistency (inter-annotator agreement), efficiency (time of annotation) and validity (by comparing it with crowd-sourced adequacy judgements).

4.1 Datasets and Translation Systems

For each of the four language pairs under consideration we built phrase-based MT systems using Moses (Koehn et al., 2007). These were trained on large parallel data sets extracted from OPUS (Tiedemann, 2009), and the data sets released for the WMT14 medical translation task (Bojar et al., 2014), giving between 45 and 85 million sentences of training data, depending on the language pair. These translation systems were used to translate texts derived from both NHS 24\(^6\) and Cochrane\(^7\) into the four languages. NHS 24 is a public body providing healthcare and health-service related information in Scotland; Cochrane is an international NGO which provides independent systematic reviews on health-related research. NHS 24 texts come from the “Health A-Z” section in the NHS Inform website, and Cochrane texts come from their plain language summaries and abstracts.

4.2 HUME Annotation Statistics

The source sentences are all in English, and their UCCA annotation was performed by four computational linguists and one linguist. For the annotation of the MT output, we recruited two annotators for each of German, Romanian and Polish and one main annotator for Czech. For computing Czech IAA, several further annotators worked on a small number of sentences each. We treat these further annotators

\(^5\)The interleaving words are “... und beide berichteten ...” (lit. “... and both report reported ...”), which doesn’t form any coherent relation with the rest of the sentence.

\(^6\)http://www.nhs24.com/

\(^7\)http://www.cochrane.org/
Table 1: HUME-annotated #sentences and #units.

<table>
<thead>
<tr>
<th></th>
<th>cs</th>
<th>de</th>
<th>pl</th>
<th>ro</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Sentences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annot. 1</td>
<td>324</td>
<td>339</td>
<td>351</td>
<td>230</td>
</tr>
<tr>
<td>Annot. 2</td>
<td>205</td>
<td>104</td>
<td>340</td>
<td>337</td>
</tr>
<tr>
<td>#Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annot. 1</td>
<td>8794</td>
<td>9253</td>
<td>9557</td>
<td>6152</td>
</tr>
<tr>
<td>Annot. 2</td>
<td>5553</td>
<td>2906</td>
<td>9303</td>
<td>9228</td>
</tr>
</tbody>
</table>

Table 2: Median annotation times per sentence, in seconds. *: no timing information is available, as this was a collection of annotators, working in parallel.

<table>
<thead>
<tr>
<th></th>
<th>cs</th>
<th>de</th>
<th>pl</th>
<th>ro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annot. 1</td>
<td>255</td>
<td>140</td>
<td>138</td>
<td>96</td>
</tr>
<tr>
<td>Annot. 2</td>
<td>*</td>
<td>162</td>
<td>229</td>
<td>207</td>
</tr>
</tbody>
</table>

Table 3: IAA for the multiply-annotated units, measured by Cohen’s Kappa.

<table>
<thead>
<tr>
<th></th>
<th>cs</th>
<th>de</th>
<th>pl</th>
<th>ro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>181</td>
<td>102</td>
<td>334</td>
<td>217</td>
</tr>
<tr>
<td>All units</td>
<td>4686</td>
<td>2793</td>
<td>8384</td>
<td>5604</td>
</tr>
<tr>
<td>Kappa</td>
<td>0.64</td>
<td>0.61</td>
<td>0.58</td>
<td>0.69</td>
</tr>
<tr>
<td>Atomic units</td>
<td>2982</td>
<td>1724</td>
<td>5386</td>
<td>3570</td>
</tr>
<tr>
<td>Kappa</td>
<td>0.54</td>
<td>0.29</td>
<td>0.54</td>
<td>0.50</td>
</tr>
<tr>
<td>Structural units</td>
<td>1602</td>
<td>1040</td>
<td>2655</td>
<td>1989</td>
</tr>
<tr>
<td>Kappa</td>
<td>0.31</td>
<td>0.44</td>
<td>0.33</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Looking more closely at the areas of disagree-
ment, we see that for the Polish structural units, the proportion of As was quite different between the two annotators (53% vs. 71%), whereas for other languages the annotators agree in the proportions. We believe that this was because one of the Polish annotators did not fully understand the guidelines for structural units, and percolated errors up the tree, creating more Bs. For German atomic and Czech structural units, where Kappa is also around 0.3, the proportion of such units being marked as “correct” is relatively high, meaning that the class distribution is more skewed, so the expected agreement used in the Kappa calculation is high, lowering Kappa. Finally we note some evidence of domain-specific disagreements, for instance the German MT system normally translated “review” (as in “systematic review” – a frequent term in the Cochrane texts) as “Überprüfung”, which one annotator marked correct, and the other (a Cochrane employee) as incorrect.

5 Comparison with Direct Assessment

Recent research (Graham et al., 2015b; Graham et al., 2015a; Graham, 2015) has proposed a new approach for collecting accuracy ratings, direct assessment (DA). Statistical interpretation of a large number of crowd-sourced adequacy judgements for each candidate translation on a fine-grained scale of 0 to 100 results in reliable aggregate scores, that correlate very strongly with one another.

We attempted to follow Graham et al. (2015b) but struggled to get enough crowd-sourced judgements for our target languages. We ended up with 10 adequacy judgements on most of the HUME annotated translations for German and Romanian but insufficient data for Czech and Polish. We see this as a severe practical limitation of DA.

Figure 6 plots the HUME score for each sentence against its DA score. HUME and Direct Assessment scores correlate reasonably well. The Pearson correlation for en-ro (en-de) is 0.70 (0.58), or 0.78 (0.74) if only doubly HUME-annotated points are considered. This confirms that HUME is consistent with an accepted human evaluation method, despite their conceptual differences. While DA is a valuable tool, HUME has two advantages: it returns fine-grained
Figure 7: Pearson correlation of HUME vs. DA scores for en-ro and en-de. Each bar represents a correlation between DA and an aggregate HUME score based on a sub-set of the units (#nodes for the en-de/en-ro setting in brackets): all units ("all", 8624/10885), atomic ("atomic", 5417/6888) and structural units ("struct", 3207/3997), and units by UCCA categories: Scene main relations (i.e., Process and State units; "P and S", 954/1178), Parallel Scenes ("H", 656/784), Participants ("A", 1348/1746), Centres ("C", 1904/2474), elaborators ("E", 1608/2031) and linkers ("L", 261/315).

Verbal Structures Only? HMEANT focuses on verbal argument structures, ignoring other pervasive phenomena such as non-verbal predicates and inter-clausal relations. Consider the following example:

Source: a coronary angioplasty may not be technically possible
Transl.: eine koronare Angioplastie kann nicht technisch möglich
Gloss: a coronary angioplasty can not technically possible

The German translation is largely correct, except that the main verb “sein” (“be”) is omitted. While this may be interpreted as a minor error, HMEANT will assign the sentence a very low score, as it failed to translate the main verb.

It is also relatively common that verbal constructions are translated as non-verbal ones or vice versa. Consider the following example:

Source: ... tend to be higher in saturated fats
Transl.: ... in der Regel höher in gesättigte Fette
Gloss: ... as a rule higher in saturated fats

The German translation is largely correct, despite the grammatical divergence, namely that the English verb “tend” is translated into the German prepositional phrase “in der Regel” (“as a rule”). HMEANT will consider the translation to be of poor quality as there is no German verb to align with the English one.

We conducted an analysis of the English UCCA Wikipedia corpus (5324 sentences) in order to assess the pervasiveness of three phenomena that are not well supported by HMEANT. First, copula clauses

8 Argument structures and linkers are explicitly marked in UCCA. Non-auxiliary instances of “be” and nouns are identi-
are treated in HMEANT simply as instances of the main verb “be”, which generally does not convey the meaning of these clauses. They appear in 21.7% of the sentences, according to conservative estimates that only consider non-auxiliary instances of “be”. Second, nominal argument structures, ignored by HMEANT, are in fact highly pervasive, appearing in 48.7% of the sentences. Third, linkers that express inter-relations between clauses (mainly discourse markers and conjunctions) appear in 56% of the sentences, but are again ignored by HMEANT. For instance, linkers are sometimes omitted in translation, but these omissions are not penalized by HMEANT. The following is such an example from our experimental dataset:

Source: However, this review was restricted to ...

Transl.: Diese Überprüfung beschränkte sich auf ...

Gloss: This review was restricted to ...

We note that some of these issues were already observed in previous applications of HMEANT to languages other than English. See Birch et al. (2013) for German, Bojar and Wu (2012) for Czech and Chuchunkov et al. (2014) for Russian.

One Structure or Two. HUME only annotates the source, while HMEANT relies on two independently constructed structural annotations, one for the reference and one for the translation. Not annotating the translation is appealing as it is often impossible to assign a semantic structure to a low quality translation. On the other hand, HUME may be artificially boosting the perceived understandability of the translation by allowing access to the source.

Alignment. In HMEANT, the alignment between the reference and translation structures is a key part of the manual annotation. If the alignment cannot be created, the translation is heavily penalized. Bojar and Wu (2012) and Chuchunkov et al. (2014) argue that the structures of the reference and of an accurate translation may still diverge, for instance due to a different interpretation of a PP-attachment, or the verb having an additional modifier in one of the structures. It would be desirable to allow modifications to the SRL annotations at the alignment stage, to avoid unduly penalizing such spurious divergences.

The same issue is noted by Lo and Wu (2014): the IAA on SRL dropped from 90% to 61% when the two aligned structures were from two different annotators. HUME uses automatic (word-level) alignment, which only serves as a cue for directing the attention of the annotators. The user is expected to mentally correct the alignment as needed, thus circumventing this difficulty.

Monolingual vs. Bilingual Evaluation. HUME diverges from HMEANT and from shallower measures like BLEU, in not requiring a reference. Instead, it directly compares the source and the translation. This requires the employment of bilingual annotators, but has the benefit of avoiding using a reference, which is never uniquely defined, and may thus lead to unjustly low scores where the translation is a paraphrase of the reference. If only monolingual annotators are available, the HUME evaluation could be performed with a reference sentence instead of with the source. This, however, would risk inaccurate judgements due to the naturally occurring differences between the source and its reference translations.

7 Conclusion

We have introduced HUME, a human semantic MT evaluation measure which addresses a wide range of semantic phenomena. We have shown that it can be reliably and efficiently annotated in multiple languages, and that annotation quality is robust to sentence length. Comparison to direct assessments further support HUME’s validity. We believe that HUME, and a future automated version of HUME, allows for a finer-grained analysis of translation quality, and will be useful in informing the development of a more semantically aware approach to MT.

All annotation data gathered in this project, together with analysis scripts, is available online9.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 644402 (HimL).

9https://github.com/bhaddow/hume-emnlp16
References

Jan Hajic, Eva Hajicová, Jarmila Paneová, Petr Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučiková, Marie Mikulová, Petr Pajas, Jan Popelka, Jiří Semecky, Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka Urešová, and Zdeněk Zabokrtský. 2012. Announcing Prague Czech-English Dependency Treebank 2.0. In

