Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Continuous lateral oscillations as a core mechanism for taxis in *Drosophila* larvae

Antoine Wystrach1,2, Konstantinos Lagogiannis1 and Barbara Webb1

1. School of Informatics, University of Edinburgh, UK
2. Centre de recherche sur la cognition animal, CNRS. Universite de Toulouse, France

Larvae exhibit continuous rhythmical alternations between left and right turns

- Example of larva trajectory
- Tail speed, Anterior body angular speed, Body bending

Fourier analysis

- Individual 11
- Fourier plot

Distribution of tail velocity

- Time (s)
- Distribution of headcasts amplitude
- Distribution of headcasts duration

Body bending (deg)

- 0.05
- 0.25
- 0.2
- 0.3

Tail speed (mm/s)

- −4
- −50
- 4
- 35

Hypothesis

Taxis in larvae results from a continuous modulation of ongoing left-right turning oscillations

No need for ‘decision making’. Seemingly discrete actions spontaneously emerge

- Straight RUN
- Curved RUN
- HEAD CAST
- STOP

The simulation captures taxis trajectory signatures

- Real larvae
- Simulation

Learning as a simple change in gain

- Real larvae
- Simulation

A simple solution for combining multiple modalities along both sensory and memory pathways

- Summed Sensory Signal (T)

We embodied this hypothesis into simple agent based simulations

- Neural model

Both small and large headcasts share the same underlying oscillatory rhythm

- Example of larva trajectory
- Tail speed, Anterior body angular speed, Body bending

Distribution of headcasts duration

- Time relative to stop (s)
- 0
- 0.5
- 1
- 1.5
- 2
- 2.5
- 3
- 3.5

Stronger sensory inputs = stronger gain

- Real larvae
- Simulation

Body Bending (deg)

- −100
- 0
- 20
- 60
- 100
- 120
- 140
- 160
- 180

Groups of larva exhibit continuous rhythmical alternations between left and right turns

- Average anterior body orientation
- Time (s)
- Average crawling speed during stop phase

Body angular velocity (deg/s)

- −10
- 0
- 10
- 15

Tail speed, Anterior body angular speed

- −200
- −100
- −50
- 0
- 50
- 100
- 150

Velocity

- −20
- −10
- 0
- 10
- 20

Distribution of headcasts amplitude

- Maximum angular speed (deg/s)
- 0
- 0.2
- 0.4
- 0.6
- 0.8

Distribution of headcasts duration

- Time (s)
- 0
- 0.2
- 0.4
- 0.6
- 0.8

Distribution of tail velocity

- Tail speed (mm/s)
- 0
- 0.05
- 0.2
- 0.3

Gain modulation

- Gain = -5
- Gain = -2
- Gain = -10