Microvariation in laryngeal realism

Preaspiration in North Germanic

Pavel Iosad
University of Edinburgh
pavel.iosad@ed.ac.uk

25th Manchester Phonology Meeting
University of Manchester
27th May 2017

Preview

• Preaspiration in North Germanic: the traditional view
• Variation within Scandinavia: more than meets the eye?
• The phonology of preaspiration: nice and boring
• Phonological representations aren’t the place to reflect phonetic variability

1 Preaspiration in North Germanic

1.1 Background

Stressed syllables in North Germanic

• Strict bimoracity in stressed syllables (Riad 1992, Kristoffersen 2011) modulo extrametricality
 – Old Norse taka [(ta)ka] ‘take’: not allowed in most varieties
 – Norwegian taket [(tɑː)kə] ‘the roof’
 – Norwegian takke [(tɑk)kə] ‘to thank’
 – Norwegian *[tɑːkːə]

Laryngeal contrast

• ‘Fortis’ [p t k] vs. ‘lenis’ [b d ɡ]
- Fortis: aspiration foot-initially
- Lenis: various realizations
 - Full prevoicing: Central Standard Swedish (Pétur Helgason & Ringen 2008)
 - Complete devoicing: Danish (Hutters 1985), Icelandic (Magnús Pétursson 1976)
 - Partial voicing: Norwegian varieties (e.g. Halvorsen 1992)
- No restriction on quantity: both fortes and lenes can be geminate

Norwegian *lapp* 'sheet' vs. *labb* 'paw'

Preaspiration: the traditional view

- Rare cross-linguistically (Silverman 2003)
- Though perhaps more stable once it does appear (Clayton 2010)
- In North Germanic: particularly geminate fortes in stressed syllables (Pétur Helgason 2002, Johnsen 2007)
- Icelandic and Faroese: known to 19th century scholars (Sweet 1877, Jakobsen 1886)
- Norwegian: (some) traditional dialect descriptions

Preaspiration in Norwegian

- North Gudbrandsdalen, inland south (e.g. Ross 1907)
- Senja, north (Iversen 1913)
- Rogaland, south-west (Oftedal 1947, Wolter 1965)
- Lofoten, north (Elstad 1982)

1.2 The status of preaspiration

‘Normative’ vs. ‘non-normative’ status

Pétur Helgason (2002: 21)

If the absence (or presence) of a particular phonetic trait leads to a pronunciation that is considered deviant by the speakers of a given dialect, that trait can be classified as normative (or normatively absent) in that dialect. Conversely, a trait whose absence or presence does not lead to deviant pronunciation can be classified as non-normative in that dialect.

- This is a sociolinguistic definition
The phonological status of preaspiration

- What are the system-internal consequences?
- Normative preaspiration is obligatory: but is it phonological?
 - Icelandic: yes, driven by synchronic considerations of weight
 - Faroese: perhaps, driven by synchronic considerations of weight and vowel height
- What is the phonological status of non-normative preaspiration?

Parameters of variation

- Normative preaspiration
 - Difference in patterning after long vowels (*harðmæli* vs. *linmæli* Icelandic)
- Non-normative preaspiration
 - Presence of preaspiration controlled by preceding vowel height (reported for Faroese)
 - Presence of oral frication (Faroese)
 - Difference in patterning depending on vowel length
- Relationship between preaspiration and sonorant devoicing (Pétur Helgason 2002)?

2 Looking for preaspiration

2.1 Sources of evidence

Traditional descriptions: how reliable?

- Oftedal (1947): Gjesdal Norwegian has preaspiration in words like *katt* 'cat', *katta* 'the cat', but Dalane Norwegian has postaspiration in these contexts
- Tengesdal (2015): instrumental study of Dalane, preaspiration is pervasive
- Allen (2016): instrumental study reports preaspiration in Oslo

Corpus evidence

- Numerous examples in the Nordic dialect corpus (Johannessen et al. 2009)

1Interestingly, the very same Oftedal (1956) accurately reports the presence of preaspiration in the Scottish Gaelic of Lewis.
Interim conclusion

- Mounting evidence that reports of the absence of preaspiration might not be reliable
- Pétur Helgason (2002: 207): ‘[T]he tendency to preaspirate, although it is not normative, permeates Scandinavian stop production.’

2.2 Current study

Motivation

- Main interest: variation across ‘dialects’
- Previous comparative work has mostly focused on duration (Wretling, Strangert & Schaeffler 2002, Tronnier 2002, van Dommelen, Holm & Koreman 2011)
- Pétur Helgason (2002): more information on other factors (distribution, interaction with sonorant devoicing)

Study

- Western Norway (southern Rogaland): widely regarded as a ‘preaspirating’ region
- Northern Norway (variety of regions): few if any reliable reports
- Word list: real words
 - Short vs. long vowels
 - Fortis vs. lenis stops, [s] for control
 - Labials vs. coronals vs. dorsals
 - Mono- vs. disyllables
 - Also: lC, NC, rC clusters with different C laryngeal specification
- Mostly balanced, though some conditions less available
 - [b d g] after long vowels
 - [b d g] after nasals
Incidence of preaspiration

Figure 2: Voiceless preaspiration of stops by dialect and consonant length

- A *lot* of preaspiration, particularly with geminates (short vowels): expected
- Significant amounts of preaspiration after long vowels, albeit less than after short ones
 - In line with tendencies elsewhere
 - Still perhaps surprisingly frequent

These numbers understate the occurrence of ‘preaspiration’ compared to previous literature, because they exclude breathy voice

Normative preaspiration in Norwegian?

- Some northern speakers show (near-)normative preaspiration of geminates, similar to the western ones

How many systems?

- Can we quantify the amount of variation between speakers/varieties?
- One way: *clustering*
- Fit a model that treats all effects as per-speaker uncorrelated random slopes: estimate of differences among speakers
• Here: model the occurrence of (voiceless) preaspiration in stops

```r
fit <- glmer(p ~ 0 + (fortis + v_is_long + v - 1 | speaker),
             data = stops,
             family = binomial(link=logit))
```

• Now take the random effects and run a clustering procedure
• Here: k-means clustering, best number of clusters is 5 by the ‘elbow method’

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Cluster</th>
<th>Place of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF1</td>
<td>1</td>
<td>Nordreisa</td>
</tr>
<tr>
<td>NF6</td>
<td>1</td>
<td>Øksnes</td>
</tr>
<tr>
<td>VF1</td>
<td>1</td>
<td>Stavanger</td>
</tr>
<tr>
<td>VF2</td>
<td>1</td>
<td>Bryne</td>
</tr>
<tr>
<td>VF3</td>
<td>1</td>
<td>Finnøy</td>
</tr>
<tr>
<td>VM1</td>
<td>1</td>
<td>Stavanger</td>
</tr>
<tr>
<td>NF2</td>
<td>2</td>
<td>Alta</td>
</tr>
<tr>
<td>NF7</td>
<td>2</td>
<td>Alta</td>
</tr>
<tr>
<td>NF4</td>
<td>3</td>
<td>Melbu</td>
</tr>
<tr>
<td>NF5</td>
<td>3</td>
<td>Stokmarknes</td>
</tr>
<tr>
<td>VM2</td>
<td>4</td>
<td>Kvitseøy</td>
</tr>
<tr>
<td>VM3</td>
<td>4</td>
<td>Stavanger</td>
</tr>
<tr>
<td>NF3</td>
<td>5</td>
<td>Sørreisa</td>
</tr>
</tbody>
</table>

Table 1: Clustering of speakers by random effects
• The ordering of the clusters is random, but some patterns seem to emerge
• Cluster 1 is the speakers who basically always preaspirate
• Some other clusters make geographical sense
 – Cluster 2 has the two speakers from Alta in Finnmark
 – Cluster 3 has the two speakers from southern Vesterålen (Hadseløya)
• Some confidence in the method?

Interim conclusion

• Preaspiration is pervasive both in western varieties (expected) and at least some northern ones (less expected)
• Some variation across speakers at a fairly finely grained level, though probably not just individual differences
• The grammatical status of this variation is less immediately clear

3 The phonology of preaspiration

3.1 Preliminary analysis

Laryngeal realism?
• Laryngeal realism (Honeybone 2005 and much other work): Norwegian obstruents are [fortis] [p t k] vs. [ʔ] [b d ɡ]

• Sources of evidence:

Phonological evidence

• Norwegian is a fairly typical [H] language
• ‘Germanic’ pattern of obstruent assimilation (Salmons forthcoming)

Kristoffersen (2000: 84) on (Eastern) Norwegian
If degree of ‘activity’ is measured in a feature’s ability to cause changes in a given structure, either by forcing incompatible features to delink or by spreading, there can be no doubt that [asp]… comes out as more active compared with [voice].

• Crucial pattern of the weak verbs’ past tense suffix:
 – Quite involved in Eastern Norwegian
 – More like classic [H] activity pattern in Western Norwegian (Venås 1974, Skjekkeland 2005)

Laryngeal realism and lenis stops

• If lenis stops are [ʔ], how are they realized phonetically?
 – Passive voicing: German, English
 – Variable but frequent voicing: some Norwegian varieties
 – Categorical voicing: Central Standard Swedish
 – Categorical voicelessness: Icelandic, Danish, Scottish Gaelic

Western Norwegian lenis stops

• Previously described as having categorically voiceless lenis stops (Marstrander 1932, Tengesdal 2015)
• Current data essentially agrees: very few lenis stops with any voicing

2 At least some varieties some of the time.
3.2 Sonorant devoicing in Western Norwegian

Sonorant devoicing

- All the western speakers in the study have the uvular [ʁ]/[χ] as the categorical or overwhelming majority realization of the rhotic
- Current data:
 - Categorical assimilation of [ʁ]
 - Variable assimilation of [l m n]

Summary

- Fortis stops behave as expected: triggers of categorical devoicing of [ʁ]
- Fortis stops: likely triggers of gradient devoicing of [l m n]
- Lenis stops do neither, even though they are categorically voiceless

Analysis

- [fortis] stops [p t k] trigger a phonological assimilation process in rhotics
- Gradient coarticulation can cause some devoicing of laterals and nasals before [fortis] [p t k], in parallel with preaspiration
- [∅] stops [b d ɡ] cannot trigger assimilation of rhotics for lack of a feature
- [∅] stops [b d ɡ] do not cause gradient devoicing, either
- However, [b d ɡ] must be articulated with glottal spreading to inhibit voicing
3.3 Formalizing the analysis

Analysis of Norwegian in laryngeal realism, revisited

- Phonological criteria: unproblematic |H| vs. |∅|
- Phonetic criteria: what is the specification of lenis stops?
- Beckman, Jessen & Ringen (2013): cross-linguistic differences among lenis stops are captured via a specification of [αs.g.], α ∈ [1...n]
- With a large enough α, lenis stops are not voiced

Phonetic variation is irrelevant

- Rogaland Norwegian lenis stops are voiceless, but show no phonetic or phonological evidence of being [spread glottis]
- Not clear how the [αs.g.] model can capture the finely grained community-level differences in the behaviour of fortis or lenis stops
- Not clear whether this is desirable: these finely grained differences appear irrelevant for categorical phonological behaviour
Conclusion: a substance-free framework

- Laryngeal realism is right on the basic asymmetry in phonological behaviour: marked [fortis] vs. unmarked [∅]
- Laryngeal realism may not have the tools to capture finely grained phonetic detail
- This is because the detail is irrelevant (Salmons forthcoming)
- Substance-free approach
 - Featural specification captures asymmetries in phonological behaviour
 - The precise realization is variable and conventional (Iosad 2017)
 - Phonological criteria > phonetic criteria

Summary

- Preaspiration is attested (even) more widely than often assumed
- Lack of reports, especially in traditional descriptions, should not be taken to mean preaspiration is absent
- There is lots of attention-worthy variation across dialects
- This picture is most consistent with a substance-free approach to featural specification

Acknowledgements

- Funded by a Research Incentive Grant from the Carnegie Trust for the Universities of Scotland
- Jan Kristian Hognestad (University of Stavanger) for help with fieldwork and useful comments
- Øystein Vangsnes (UiT The Arctic University of Norway) for help with fieldwork
- Jade Sandstedt, the RA, for the mark-up work
- Josef Fruehwald for statistics ideas
- Takk til alle talrar!

References

