A new class of NO-donor pro-drugs triggered by gamma-glutamyl transpeptidase with potential for reno-selective vasodilatation

Citation for published version:

Digital Object Identifier (DOI):
10.1039/C2CC38382A
10.1039/c2cc38382a

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Chemical Communications

Publisher Rights Statement:
Gold Open Access paid

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A new class of NO-donor pro-drugs triggered by \(\gamma \)-glutamyl transpeptidase with potential for reno-selective vasodilatation†

Qingzhi Zhang,†a Agnieszka Kulczynska,†a David J. Webb,†b Ian L. Megson*,†c and Nigel P. Botting†*†

There are a wide range of NO-donor drugs in existence,1 including conventional organic nitrates and nitrates, S-nitrosothiols, NONOates and \(N \)-hydroxyguanidines (NHGs).12-16 The NHGs 1 are analogues of \(N \)-\(\alpha \)-hydroxy-\(\gamma \)-arginine (NOHA), a biosynthetic intermediate involved in the generation of NO from \(\gamma \)-arginine.11 Several enzymatically activated NHG pro-drugs have been reported such as peptidylglycine \(\alpha \)-amidating mono-oxygenase (PAM)-active \(O \)-carboxymethyl \(N \)-hydroxyguanidines17 and \(N \)-[\(\beta \)-galactosidas]-active (\(\beta \)-galactopyranos-1-yl)oxyguanidines.18 Our approach aimed to mask the NO generating group with a \(\gamma \)-glutamyl residue to facilitate activation by the enzyme, \(\gamma \)-glutamyl transpeptidase (\(\gamma \)-GT). Given that \(\gamma \)-GT is primarily expressed in the kidney (5-10 fold higher than in the liver and pancreas),19 it was envisaged that this enzyme could be used to trigger reno-selective release of an NHG and subsequent \textit{in situ} generation of NO (Scheme 1). A similar strategy has been described for reno-selective \(\gamma \)-3,4-dihydroxyphenylalanine (\(\gamma \)-DOPA), the Glu-DOPA.20,21

However, the direct coupling of NHGs with a \(\gamma \)-glutamyl residue was hampered by intramolecular cyclization and dehydration leading to a 1,2,4-oxidiazole ring; or alternatively lactamization and release of a pyroglutamic acid (Scheme 2, data not included).

In an effort to prevent these modes of cyclization, we investigated the use of a bridge between the NHG and the \(\gamma \)-glutamyl group. Both \(\gamma \)-glutamyl itself and \(\gamma \)-aminobutanol (GABA)22 were explored as linkers. Thus 2a and 2b became synthesis targets (Scheme 3) and they were prepared \textit{via} appropriately protected dipeptide intermediates (ESI;† Scheme S1). Unfortunately 2a gradually decomposed presumably due to the carboxylic acid moieties promoting autodegradation.

![Scheme 1: Approach to \(\gamma \)-GT triggered release of NHG 1 and the reno-selective release of nitric oxide.](image-url)
γ-Glutamyl anilines are known substrates for γ-GT and presented an alternative linker option. The success of such an approach would involve a 1,6-elimination following the action of γ-GT on N′-γ-glutamylaminobenzyloxy-guanidine 4a–c, as illustrated in Scheme 4. Similar spacers have been employed previously in anticancer pro-drug design. 24

In the event, the synthesis of 4a–c was successfully accomplished through a six-step reaction sequence (Scheme 4). Firstly, γ-glutamylation of 4-aminobenzylalcohol with Alloc-γ-glutamic acid 1-allyl ester (Alloc-Glu-OAll) (ESI† Scheme S1) gave benzyl alcohol 5. Conversion of the benzylalcohol moiety to the corresponding bromide 6 followed by nucleophilic displacement with BocNHOH generated aminoxyde 7, and then treatment with CF3COOH–DCM, gave the key intermediate 8 which was coupled with the required amino(alkyl/aryliminio)ethanesulfonate 9a–c to generate 10a–c. Finally the Alloc and Boc groups were removed under neutral conditions with [(Pd(PPh3)4)/PhSiH3] to give 4a–c.

The same aminobenzyl linker was also used for the γ-glutamylation of N-hydroxyformamidines (NHFs) (Scheme 5). N′-Hydroxy-N-(4-butyl-2-methylphenyl)formamidine25 and N′-hydroxy-N-(3-chloro-4-morpholin-4-ylphenyl)formamidine26 have been documented as 20-hydroxyeicosatetraenoic acid (20-HETE) inhibitors. 20-HETE is a major metabolite of arachidonic acid and is a potent vasoconstrictor; localisation of an NHF would counter the effect of 20-HETE and induce a synergic vasodilation effect mediated by NO. Thus N′-hydroxyphenylethylformamidine 12 was prepared in this study and converted to pro-drug 14.

Pro-drugs 4a–c and 14 were rapidly cleaved by γ-GT and they were completely deacylated after 1 h, as judged by LC-MS. Fig. 1(a) and (b) illustrates the LCMS trace of 4b and the conversion of 4b to deacylated intermediate 15 [M+Glu]+ by γ-GT. This was in clear contrast to the GABA-linked candidates 2b and 3, which proved to be resistant to the action of γ-GT. 1,6-Elimination and loss of the linker from 15 to generate the parent NHG 1b is significantly slower (trace amount of parent 1b was detected by selective ion monitoring at m/z 180) than the cleavage of the γ-glutamyl moiety. In preliminary experiments with animal tissue, LC-MS analysis revealed ~90% conversion of 4b (100 μM) to 1b in a rat renal homogenate (37 °C; 45 min). In addition, 4b was found to induce substantial vasodilation in rat isolated perfused kidney preparations (50% of maximum vasodilatation induced by ~40 μM 4b). Details of the bioactivity of these pro-drugs will be reported elsewhere.

In summary, several candidate NO-donor pro-drugs have been prepared, designed for activation by γ-GT. The pro-drugs...
comprise the parent NO-donor, a linker and a γ-glutamyl moiety. GABA-linked pro-drugs are not suitable substrates for γ-GT, but those linked by the aminobenzyl moiety proved to be good substrates for the enzyme. The γ-glutamyl group is cleaved rapidly, with a slower decomposition of the aminobenzyl linker. Improved design is now focussed on tuning the spacer to encourage a more rapid release of the parent NHG drug.

The authors are grateful to the Wellcome Trust (Catalyst Biomedical Development Award 063729/Z/01/Z) for financial support. Thanks go to Prof. David O’Hagan (University of St Andrews) for his input into manuscript preparation.

References