Molecular and regulatory properties of a public good shape the evolution of cooperation

Citation for published version:
Kuemmerli, R & Brown, SP 2010, 'Molecular and regulatory properties of a public good shape the evolution of cooperation' Proceedings of the National Academy of Sciences, vol 107, no. 44, pp. 18921-18926. DOI: 10.1073/pnas.1011154107

Digital Object Identifier (DOI):
10.1073/pnas.1011154107

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the National Academy of Sciences

Publisher Rights Statement:
Freely available online through the PNAS open access option.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 20. Apr. 2017
Molecular and regulatory properties of a public good shape the evolution of cooperation

Rolf Kümmel*a,b,c,1 and Sam P. Brown*a,1

aInstitute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; bDepartment of Environmental Sciences, Eidgenössiche Technische Hochschule Zurich, CH-8092 Zurich, Switzerland; cDepartment of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), CH-8600 Dübendorf, Switzerland; and dDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom

Edited by Brian Skyrms, University of California, Irvine, CA, and approved September 7, 2010 (received for review July 29, 2010)

Public goods cooperation abounds in nature, occurring in organisms ranging from bacteria to humans. Although previous research focused on the behavioral and ecological conditions favoring cooperation, the question of whether the molecular and regulatory properties of the public good itself can influence selection for cooperation has received little attention. Using a metapopulation model, we show that extended molecular durability of a public good—allowing multiple reuse across generations—greatly reduces selection for cheating if (and only if) the production of the public good is facultatively regulated. To test the apparent synergy between public goods durability and facultative regulation, we examined the production of iron-scavenging pyoverdin molecules by the bacterium Pseudomonas aeruginosa, a cooperative behavior that is facultatively regulated in response to iron availability. We show that pyoverdin is a very durable public good and that extended durability significantly enhances fitness. Consistent with our model, we found that nonsiderophore-producing mutants (cheats) had a relative fitness advantage over siderophore producers (cooperators) when pyoverdin durability was low but not when durability was high. This was because cooperators facultatively reduced their investment in pyoverdin production when enough pyoverdin had accumulated in the media—a cost-saving strategy that minimized the ability of cheats to invade. These findings show how molecular properties of cooperative acts can shape the costs and benefits of cooperation.

extracellular products | siderophores | public goods durability | inclusive fitness | microbes

The joint contribution of individuals to a public good that benefits the local community is ubiquitous in nature and occurs in numerous organisms ranging from bacteria to humans (1–3). However, explaining the evolution of such cooperation is difficult, because public goods, although beneficial to the community, can be exploited by cheating individuals that refrain from making the costly contribution while still reaping the benefits (4–7). Despite this dilemma, which predicts the breakdown of cooperation, public goods cooperation often prevails in nature.

Although numerous behavioral and ecological factors have been proposed that can provide either direct (self) or indirect (kin-selected) benefits to cooperators (7–9), the question of whether the molecular and regulatory properties of the public good itself can influence selection for cooperation has received little attention. Recently, Brown and Taddei (10) showed that the dynamics of cooperation and cheating are affected when the durability of the public good (i.e., the extent of multiple reuse of a public good across generations) is altered. For instance, increased durability introduced oscillations between cooperators and cheats, characterized by alternate multigenerational epochs of dominance by cooperators and cheats. However, whether and under what conditions molecular durability influences selection for cooperation in nature remains unknown. Addressing this issue is crucial, because many public goods are durable and persist across generations [e.g., microbial exoproducts (3), nest constructions in social animals (11), and educational, health, and national defense institutions in human societies (12)]. Furthermore, the results of Brown and Taddei (10) imply that, all else being equal, evolutionary innovations generating more durable public goods variants will be selected against, because they allow greater proliferation by cheats. However, what if, in contrast to the assumptions of ref. 10, the public good is facultatively produced?

To address these issues, we focus on a model system of microbial public goods provision, the production of the iron-scavenging pyoverdin molecule by the bacterium Pseudomonas aeruginosa. Pyoverdin production is well-understood to be facultatively regulated in response to the severity of iron limitation (13, 14). Iron is a major limiting growth factor and is actively withheld by hosts during infections (15, 16). When free iron is scarce, the σ factor PvdS triggers pyoverdin synthesis, whereas the intracellular accumulation of iron results in the binding of iron to the ferric uptake regulator (Fur) protein, which represses pvdS promoter activity and pyoverdin synthesis (17, 18). Pyoverdin can be recycled (19) and used multiple times (20), which suggests considerable durability of this public good. Pyoverdin production is a cooperative trait, because pyoverdin molecules can be shared among neighboring cells, providing benefits to cells other than a focal producer (21–28). Consequently, pyoverdin can be exploited by cheats that avoid the cost of production (29) while reaping the benefits by taking up iron in complex with pyoverdin produced by others.

Using a mix of theory and experiment, we show that pyoverdin is highly durable and readily recyclable after bacterial use. We further show that selection for increased durability and cooperation critically depends on the ability of producers to concurrently modify their production effort, particularly through the facultative regulation of production.

Results

Theoretical Model. To understand the interaction between pyoverdin durability and its facultative regulation, we developed an ecological metapopulation model tracking the dynamics of cooperators (pyoverdin producers) and defectors (nonpyoverdin-producing cheats), with and without facultative production, over a range of public goods durability (Fig. S1). We assume that only cooperators are able to colonize empty patches, whereas cooperator patches are in turn vulnerable to colonization and takeover by migrating or de novo-arising defectors (30).

When pyoverdin production is constitutive (Fig. L4), we find that the prevalence of cooperators across the metapopulation is maximized for the most fragile public goods, whereas more durable public goods increase the life expectancy of defector patches.

Author contributions: R.K. and S.P.B. designed research, performed research, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

1To whom correspondence may be addressed. E-mail: rolf.kuemmerli@env.ethz.ch or sam.brown@zoo.ox.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011154107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1011154107

PNAS November 2, 2010 vol. 107 no. 44 18921–18926
and the total prevalence of defectors. Thus, we anticipate the evolution of a molecular planned obsolescence (31) where the public good is built to fail so as to minimize exploitation by defectors. Our constitutive model (Fig. 1A) assumes a constancy of production effort, following an innovation in molecular design. Thus, more durable molecules would lead to a greater equilibrium density of public good. In contrast, our facultative model (Fig. 1B) assumes a constancy of production outcome, and thus, more durable molecules would immediately induce lower production rates and therefore, a constant equilibrium density of public good. With facultative regulation, we find that very durable public goods now offer greater security against invasion by cheats, because the costs of cooperation are minimized (Fig. 1B). In contrast, as durability decreases, the cost to producers increases (becoming equivalent to the constitutive model when the public goods decay rate $u = 1$) as well as the advantage to cheats.

In Fig. 2, we turn to the temporal dynamics of cooperator–defector competition across a metapopulation. We begin our simulations with a metapopulation consisting solely of cooperators (producing a relatively durable public good, $u = 0.3$) and empty patches at equilibrium. We now introduce a small proportion of defectors and track their fate over time. When production is constitutive (Fig. 2A), defectors have a great initial advantage because of the accumulation of public goods in each patch and the continued investment in public goods by cooperators. Rapid growth of defectors is followed by collapse, because the public goods that they are reliant on eventually expire; this pattern of boom and bust continues as a series of damped oscillations until the equilibrium point is achieved. In contrast, when production is facultative (Fig. 2B), the pattern of boom and bust is damped by the ability of cooperators to respond to their social environment and reduce their costly production in response to the accumulation of the public good in the environment.

Experimental Results. We examined 11 different *P. aeruginosa* strains originating from different environmental and clinical backgrounds (Table S1). Six of these strains produce pyoverdin type I, whereas three and two strains produce pyoverdin type II and type III, respectively (three main pyoverdin types, which differ in the amino acid sequence of their peptide chain, have been characterized for *P. aeruginosa* so far) (32, 33). For each of these 11 strains, we were in possession of a cheating mutant that produces
no or reduced amounts of pyoverdin (27) but is able to take up the pyoverdin of the corresponding wild-type strain.

Across-strain comparison of pyoverdin durability. Pyoverdin fluoresces green and can be quantified in solution as relative fluorescence units (RFU) (34). We isolated pyoverdin from culture supernatants and followed RFU over time. We found high levels of pyoverdin fluorescence being maintained after 48 h for all three pyoverdin types (type I = 90.4% ± 0.8%; type II = 90.7% ± 1.1%; type III = 81.5% ± 1.8%) (Fig. S2), suggesting high durability of pyoverdin. Despite this overall slow decay, durability was significantly lower in strains with pyoverdin type III than in strains with pyoverdin type I (combined analysis for measures after 6, 24, and 48 h; linear mixed model (LMM): \(t_7 = -4.81, P = 0.0019 \)) and type II (LMM: \(t_7 = -5.13, P = 0.0014 \)), whereas there was no significant difference between strains with pyoverdin type I and II (LMM: \(t_7 = 0.32, P = 0.76 \)).

To test whether the persistence of fluorescence levels over time goes along with the retention of pyoverdin functionality, we conducted growth stimulation assays using pyoverdin of different ages. We added pyoverdin supernatant on the day of its extraction as well as 24 and 48 h after the extraction to fresh iron-limited media (Casamino acids supplemented with human apo-transferrin to bind free iron)—conditions that require pyoverdin for growth—and inoculated 10^3 cells from pyoverdin-defective cheating strains. We found that pyoverdin remained fully functional, because there was no significant difference in growth (optical density = \(OD_{600} \) ± SE) between cultures supplemented with fresh (0.157 ± 0.033), 24-h-old (0.158 ± 0.026), and 48-h-old (0.177 ± 0.037) pyoverdin (LMM across all three pyoverdin types: \(0.28 < t_{39} < 1.98, \alpha = 0.05 \)).

Pyoverdin durability in different environments. To test whether pyoverdin durability is affected by environmental conditions, we measured the durability in environments varying in (i) the presence or absence of nonpyoverdin-producing cheats (i.e., when the pyoverdin molecule is or is not taken up and recycled by bacteria), and (ii) low vs. high iron availability, with pyoverdin not being needed in iron-supplemented (50 \(\mu \)M FeCl\(_3\)) media. We found that the durability of pyoverdin was significantly influenced by both the presence of cheats and the supplementation of iron (Fig. 3). Over a 144-h assay, pyoverdin durability was significantly lower when iron was supplemented (LMM for pyoverdin type I: \(t_{129} = 6.06, P < 0.0001 \); for type II: \(t_{129} = 5.38, P < 0.0001 \); for type III: \(t_{129} = 9.89, P < 0.0001 \)) and was significantly lower in the presence of cheats for pyoverdin type II (LMM: \(t_{129} = 4.26, P = 0.0001 \)) but not for pyoverdin type I (\(t_{129} = 1.70, P = 0.096 \)) and type III (\(t_{129} = 1.28, P = 0.21 \)). Moreover, there was a significant interaction between the presence of cheats and iron supplementation, whereby the supplementation of iron decreased the durability much more in the presence than in the absence of cheats (LMM for type I: \(t_{129} = 3.79, P = 0.0005 \); for type II: \(t_{129} = 4.40, P < 0.0001 \); for type III: \(t_{129} = 2.99, P = 0.0046 \)).

Fitness consequences of pyoverdin durability. We simulated extended pyoverdin durability by supplementing pyoverdin to the growth medium, which mimics the presence of durable pyoverdin produced by a previous generation—on the growth of cooperator (gray bars) and cheat (white bars) monocultures. Pyoverdin supplementation significantly increased growth, with growth stimulation being more pronounced in cheat than in cooperator monocultures in all 11 strain pairs. *P < 0.05. ns, not significant.
Discussion

We show that pyoverdin is an extremely durable and fitness-enhancing public good that remains functional for long periods of time. Experimentally extended pyoverdin durability resulted in the down-regulation of pyoverdin production by bacteria—a cost-saving strategy that eliminated the fitness advantage that non-pyoverdin-producing cheats normally experience in mixed cultures with cooperative pyoverdin producers. Together with the findings of our model, our data highlight that facultative production of a durable public good represents a powerful mechanism to reduce selection for cheating, because it minimizes the cost (c) of cooperation while maintaining its benefits (b) (35) and thereby, contributes to satisfying Hamilton’s rule for the evolution of cooperation: \(rb > c \), where \(r \) is the relatedness between the actor and the beneficiary of a cooperative act (36). This two-pronged mechanism (durability plus facultative control) could potentially contribute to the evolutionary stability of numerous bacterial extracellular public goods (3).

Producing something that is durable and can continue to deliver benefits would seem obviously preferable to producing something ephemeral. In a social context, the benefits of durability may even be magnified, because the benefits can accrue not only to contemporary kin but also to descendents kin that are not yet even born (37). However, our model shows that when all else is equal, the constitutive production of more durable public goods does not favor cooperation, because defectors can thrive on their patches for extended periods of time without suffering a loss of social benefits (Fig. 1A) (10). This leads to the counterintuitive result that the constitutive production of something more durable is unfavorable in a social context. We then show that this problem can be solved when the public good is facultatively produced (Fig. 1B).

The reason for this is that the production costs (proportional to \(c \) in Hamilton’s rule) can now be immediately mitigated after the innovation of a more durable public good such that they need only to be paid briefly on colonization of an empty patch. Thus, regulatory control can temporally decouple investment into the public good by cooperators (early in colonization when \(r \) is high and benefits of cooperation accrue to producers exclusively) and subsequent competition between cooperators and cheats (i.e., when \(r \) is low). Consequently, after the cost for the public good has been paid during colonization, the resident cooperators are competitively in a strong position to withstand the challenge of any defector mutant or migrant. Empirical findings suggest that a decoupling between investment into the public good and effective competition is actually taking place: the highest investment in pyoverdin production occurs at low cell densities (i.e., on colonization) (14), conditions under which cheats have limited access to the public good and consequently, have a hard time competing and invading (26).

Our results reveal that durability of pyoverdin type III is significantly reduced compared with pyoverdin types I and II (Fig. S2). Interestingly, this pattern correlates with the abundance of the pyoverdin types across both natural and clinical isolates, with the more fragile type III pyoverdins being the least common (29, 33). This raises the question of whether increased durability provides a competitive advantage. It has been suggested that the pyoverdin locus is under diversifying selection (32), with altered pyoverdin structures possibly being a measure to limit access to the public good to close relatives (i.e., clone mates). Any structural changes to pyoverdin may, in turn, modify the robustness of the molecule and thus, contribute to the diversity in durability among types I–III. It is also possible that durability is itself under direct selection, with the direction of selection depending on prevailing ecological conditions and also the nature of regulatory control over pyoverdin production. The synergy between the benefits of regulation and durability entails that neither trait can be properly considered in isolation, and we have a multidimensional social dilemma (38), with increasing durability only favored when regulatory control of the public good is sufficiently developed. By introducing variable degrees of regulatory efficiency (SI Text), we show that the regulatory threshold for durability selection depends on the rate of disturbance. Specifically, when the risk of environmental perturbation is low (e.g., chronic infections) and therefore, the burden of cheats is high (39), very precise regulation is required before selection can favor more durable public goods (Fig. S3).

We found that the durability of pyoverdin was not only influenced by its molecular design (pyoverdin type) but also by environmental factors such as iron concentration (Fig. 3). The more rapid degradation of pyoverdin in iron-rich media in the presence of bacteria suggests that bacteria consume pyoverdin when the molecule becomes redundant. Consumption of a public good by individuals of the same or a different species may be an important factor, reducing its durability in environmental settings. Furthermore, other factors such as a high diffusion rate might significantly reduce reusability even when the public good is molecularly durable, because diffusion leaches the public good away from its producers (24, 40). Ecological conditions that determine public goods diffusion are, therefore, likely to determine reusability and the selection for cooperation. For instance, our previous work showed that media viscosity reduces pyoverdin diffusion, thereby increasing selection for cooperation (24). More generally, understanding how production, consumption, degradation, and diffusion combine to shape the dynamics of microbial public goods promises a range of insights into the ecology and evolution of microbial cooperation. Given the coupling between microbial cooperation and virulence (22, 41, 42), more detailed understanding of the dynamics of microbial social behaviors can, in turn, open strategies of pathogen control (43).

Materials and Methods

Strains. We used 11 different P. aeruginosa strains originating from different environmental and clinical backgrounds (Table S1). Six of these strains produce pyoverdin type I, whereas three and two strains produce pyoverdin type

Fig. 5. Increased durability reduces selection for cheats. Outcome of 24-h competition assays between cheats and cooperators in cultures supplemented with different quantities of pyoverdin (i.e., mimicking different durability): (A) for strain 1, pyoverdin type I, and (B) for strain 11, pyoverdin type II. Stars inside symbols indicate values significantly different from 1.

Kümmerli and Brown
Effects of Pyoverdin Durability on Monoculture Fitness. To test whether pyoverdin remains functional over time, we conducted an experiment with four treatments: (i) 200 μL fresh CAA media inoculated with 10° cooperating cells, (ii) 200 μL fresh CAA media inoculated with 10° cheat cells, (iii) 50 μL of pyoverdin supernatant + 150 μL fresh CAA media with 10° cooperating cells, and (iv) 50 μL of pyoverdin supernatant + 150 μL fresh CAA media with 10° cheat cells. This experiment involved four replications for all 11 cooperator–cheat strain pairs. Culture growth was measured as optical density at 600 nm after 24 h.

To investigate whether the supplementation of pyoverdin resulted in reduced pyoverdin investment by cooperators, we compared RFU_{t=24} observed (i.e., an estimate of the amount of pyoverdin produced per cell) in nonpyoverdin-supplemented cooperators to the extra pyoverdin produced per cell in pyoverdin-supplemented cooperators. A proxy for the extra pyoverdin produced per cooperators in pyoverdin-supplemented cultures is given by (RFU_{t=24} in pyoverdin-supplemented cooperator cultures) – (RFU_{t=24} in pyoverdin-supplemented cheat cultures)) (OPD_mn, in pyoverdin-supplemented cooperator cultures). OD is significantly positively correlated with cfu per milliliter across the OD range used here (Pearson’s product moment correlation: r = 0.973, df = 30, P < 0.0001).

Measuring Pyoverdin Durability in Different Environments. We measured the durability of pyoverdin under different environmental conditions by varying (i) the presence or absence of cheats, and (ii) the iron content of the media (50 μL FeCl₃ vs. no iron supplementation). Each treatment was independently replicated three times for all three pyoverdin types: type I (strain 1), type II (strain 3), and type III (strain 7) (details in Table S1). We transferred 100 μL of the filtered supernatant into individual wells on a 96-well microtitre plate with 100 μL fresh CAA media inoculated with 10° cells of the corresponding cheater strain. We measured culture growth 24 h after inoculation at 600 nm using SpectraMax M2 and compared growth between the different age classes of pyoverdin.

Effects of Pyoverdin Durability on Monoculture Fitness. To assess the consequences of extended pyoverdin duration (mimicked by pyoverdin supplementation) on fitness of cooperators and cheat strains in monocultures, we carried out an experiment with four treatments: (i) 200 μL fresh CAA media inoculated with 10° cooperating cells, (ii) 200 μL fresh CAA media inoculated with 10° cheat cells, (iii) 50 μL of pyoverdin supernatant + 150 μL fresh CAA media with 10° cooperating cells, and (iv) 50 μL of pyoverdin supernatant + 150 μL fresh CAA media with 10° cheat cells. This experiment involved four replications for all 11 cooperator–cheat strain pairs. Culture growth was measured as optical density at 600 nm after 24 h.

To investigate whether the supplementation of pyoverdin resulted in reduced pyoverdin investment by cooperators, we compared RFU_{t=24} observed (i.e., an estimate of the amount of pyoverdin produced per cell) in nonpyoverdin-supplemented cooperators to the extra pyoverdin produced per cell in pyoverdin-supplemented cooperators. A proxy for the extra pyoverdin produced per cooperators in pyoverdin-supplemented cultures is given by (RFU_{t=24} in pyoverdin-supplemented cooperator cultures) – (RFU_{t=24} in pyoverdin-supplemented cheat cultures)) (OPD_mn, in pyoverdin-supplemented cooperator cultures). OD is significantly positively correlated with cfu per milliliter across the OD range used here (Pearson’s product moment correlation: r = 0.973, df = 30, P < 0.0001).
c and d, patch extinction rate e, cooperator to defector mutation and replacement rate m, and public good decay rate u (Eqs. 1–4):

\[
\frac{dc}{dt} = d(C + D) - cCE + uD \quad [1]
\]

\[
\frac{dc}{dt} = cCE - eC - (d + m)C \quad [2]
\]

\[
\frac{dd}{dt} = (d + m)C - (a + e)d \quad [3]
\]

\[E + C + D = 1. \quad [4]\]

To introduce facultative production of a public good, we consider that the rates of within-patch cooperator replacement by defectors (whether arising from spontaneous mutation or colonization) will decrease for more durable public goods, because the costs of production (driving cheat replacement) will only be paid intermittently. Specifically, we assume that d = d0 and m = m0, ensuring coexistence whenever c > e + m0. More detailed model exposition and analysis are presented in SI Text.

ACKNOWLEDGMENTS. We thank Natalie Jiricny (University of Oxford, Oxford) for providing strains and Craig Maclean, Ashleigh Griffin, Stuart West, and two anonymous referees for their helpful comments. This work was funded by the Swiss National Science Foundation, a Marie Curie Intra-European Fellowship (to R.K.), and Wellcome Trust Grant 082273/207/2 (to S.P.B.).