Persistent Infection of Epstein-Barr Virus-Positive B Lymphocytes by Human Herpesvirus 8

STEFANIE KLICHE,1 ELISABETH KREMMER,2 WOLFGANG HAMMERSCHMIDT,3
ULRICH KOSZINOWSKI,1 AND JÜRGEN HAAS4*

Max-von-Pettenkofer Institut, Genzentrum, Universität München, 81377 Munich, 1 and Institut für Immuniologie and Institut für Klinische Molekularbiologie and Tumorogenetik, GSF Forschungszentrum, 80377 Munich, Germany

Received 17 April 1998/Accepted 2 July 1998

In patients with Kaposi’s sarcoma (KS), human herpesvirus 8 (HHV-8) can invariably be detected in KS tumor tissue and, at a lower frequency, in prostate tissue and peripheral blood B lymphocytes. Whereas the majority of KS spindle cells are latently infected by HHV-8, linear HHV-8 genomes characteristic for lytic infection are found predominantly in the peripheral blood cells of KS patients. In this study, we show that HHV-8 can stably infect B lymphocytes in vitro in the presence of Epstein-Barr virus (EBV). We were able to generate immortalized HHV-8/EBV+ lymphoblastoid cell lines (LCLs) derived from peripheral blood mononuclear cells (PBMC) of EBV+ and EBV+ donors. In HHV-8/EBV+ LCLs, which have the phenotype of activated B lymphocytes (CD19+, surface immunoglobulin M, CD23+, CD30+, CD80+), HHV-8 was still present after more than 25 passages (more than 9 months of culture). Latent viral transcripts and proteins were present in nonstimulated HHV-8/EBV+ LCLs. After induction by phorbol ester and n-butyrate, HHV-8/EBV+ LCLs expressed lytic HHV-8 transcripts and proteins. Moreover, HHV-8 could be serially passaged from HHV-8/EBV+ LCLs to fresh PBMC.

Human herpesvirus 8 (HHV-8) was recently detected in Kaposi’s sarcoma (KS) (11, 18, 30) and B-cell lymphomas (5, 39, 45), as well as in other malignancies and in healthy individuals. HHV-8 is a type 2 gammaherpesvirus (genus Rhadinovirus) with sequence similarity to Epstein-Barr virus (EBV), herpesvirus saimiri (HVS), equine herpesvirus 2, murine herpesvirus 68, and two recently identified herpesviruses causing retropertitoneal fibromatosis in macaques (34, 40, 41, 48). Although seroprevalence data indicated that HHV-8 is more widespread and not restricted to KS, HHV-8 is suspected of infecting tumor tissue and, at a lower frequency, in prostate tissue and peripheral blood B lymphocytes. Whereas the majority of KS spindle cells are latently infected by HHV-8, linear HHV-8 genomes characteristic for lytic infection are found predominantly in the peripheral blood cells of KS patients. In this study, we show that HHV-8 can stably infect B lymphocytes in vitro in the presence of Epstein-Barr virus (EBV). We were able to generate immortalized HHV-8/EBV+ lymphoblastoid cell lines (LCLs) derived from peripheral blood mononuclear cells (PBMC) of EBV+ and EBV+ donors. In HHV-8/EBV+ LCLs, which have the phenotype of activated B lymphocytes (CD19+, surface immunoglobulin M, CD23+, CD30+, CD80+), HHV-8 was still present after more than 25 passages (more than 9 months of culture). Latent viral transcripts and proteins were present in nonstimulated HHV-8/EBV+ LCLs. After induction by phorbol ester and n-butyrate, HHV-8/EBV+ LCLs expressed lytic HHV-8 transcripts and proteins. Moreover, HHV-8 could be serially passaged from HHV-8/EBV+ LCLs to fresh PBMC.

MATERIALS AND METHODS

Blood donors. Peripheral blood mononuclear cells (PBMC) were isolated from EDTA-treated blood of four EBV-negative and EBV-positive healthy individuals by Ficoll-Hypaque discontinuous gradient centrifugation (Lymphoflot; Biotechnology AG, Dreieich, Germany) as specified by the manufacturer. Blood donors were not from HHV-8 risk groups. EBV serologic testing was performed with the following commercial kits detecting virus capsid antigen (VCA) immunoglobulin G (IgG) (Frenesius, Bad Homburg, Germany) and IgM (Viramed, Martinsried, Germany) and Epstein-Barr virus nuclear antigen (EBNA) IgG antibodies (Bio-test, Dreieich, Germany). EBV-positive individuals were positive for VCA IgG and EBNA IgG antibodies but negative for VCA IgM antibodies. EBV-negative individuals were negative for VCA IgG, VCA IgM, and EBNA IgG.

Cell culture and EBV and/or HHV-8 infection. BCBL-1 (38), BC-1 (35), B95-8 (CRL1612), Raji (CCL 86), and LCLs were cultured in RPMI (Life Technologies), and 0.05 mM 2-mercaptoethanol (Sigma, St. Louis, Mo.). For cells at low density, the 2-mercaptoethanol was replaced by 20 mM bathocuproine disulfonic acid (Sigma), 50 mg/mL thio glycollate (Sigma), and 1 mM sodium pyruvate (Life Technologies). To induce the expression of lytic viral proteins, cells were treated with 20 mg/mL phosphatidylserine 13-acetate (TPA; Sigma) per ml and 3 mM sodium n-butyrate (Sigma) for 24 h.

Supernatants of ABEH-1, ABE-1, GMEH-1, and GME-1 cells were generated by Ficoll-Hypaque discontinuous gradient centrifugation (Lymphoflot; Biotechnology AG, Dreieich, Germany) as specified by the manufacturer. Blood donors were not from HHV-8 risk groups. EBV serologic testing was performed with the following commercial kits detecting virus capsid antigen (VCA) immunoglobulin G (IgG) (Frenesius, Bad Homburg, Germany) and IgM (Viramed, Martinsried, Germany) and Epstein-Barr virus nuclear antigen (EBNA) IgG antibodies (Biotechnology AG, Dreieich, Germany). EBV-positive individuals were positive for VCA IgG and EBNA IgG antibodies but negative for VCA IgM antibodies. EBV-negative individuals were negative for VCA IgG, VCA IgM, and EBNA IgG.

Isolation of cellular DNA and detection of viral DNA by PCR. Total cellular DNA was prepared from 106 cells by the method of Miller et al. (26). The primer used to amplify HHV-8 DNA flanked the K12 open reading frame (K12orf, 5’}

* Corresponding author. Mailing address: Max-von-Pettenkofer Institut, Genzentrum, Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany. Phone: 49 89 74017 201. Fax: 49 89 74017 250. E-mail: haas@lmb.uni-muenchen.de.
TABLE 1. Establishment of HHV-8* EBV+ LCLs from PBMC of EBV+ and EBV− donors

<table>
<thead>
<tr>
<th>Supernatant</th>
<th>EBV+ donor:</th>
<th>EBV− donor:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Control medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raji</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B95-8</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>BCBL-1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>BC-1</td>
<td>1.2</td>
<td>4.3</td>
</tr>
</tbody>
</table>

*Outgrowth is expressed as 106 outgrowing LCLs at the highest dilution.

RESULTS

Immortalization of PBMC and persistent viral infection by EBV and HHV-8. Supernatants of BCBL-1 (HHV-8+ PEL cell line), BC-1 (HHV-8− EBV+ PEL cell line), B95-8 (EBV+ marmoset cell line), and Raji (human EBV-transformed cell line with a deletion in the EBV genome resulting in an inability to release virus) were used to infect PBMC from four EBV+ and four EBV− individuals. Incubation of PBMC with control supernatant or supernatant of Raji cells did not result in the outgrowth of LCLs, independent of EBV status, indicating that the EBV present in PBMC from EBV+ individuals was not sufficient to transform B cells under the conditions used (Table 1). Incubation with supernatants of B95-8 resulted in the outgrowth of LCLs in PBMC of each individual, again independent of EBV status. Supernatants of HHV-8+ BCBL-1 cells resulted in the outgrowth of LCLs if PBMC were derived from EBV+ but not from EBV− individuals. Interestingly, supernatants of HHV-8+ and EBV+ BC-1 cells resulted in the immortalization of PBMC from both EBV− and EBV+ individuals. Since supernatants from BCBL-1 cells (HHV-8− EBV−) immortalized PBMC from EBV+ but not EBV− donors, we hypothesized that HHV-8 either provides a cofactor promoting the immortalization of EBV-transformed B cells or itself has transforming activity if EBV or EBV-derived cofactors are present. Since supernatants of BCBL-1 cells did not promote the immortalization of B lymphocytes derived from EBV+ donors in the assay system we used, we thus far have no hints for the latter.

Initially, six cell lines were established from PBMC of each donor and supernatant. PBMC from one donor were used twice, with a similar outcome. Thus, a total of 54 cell lines were established by using either BCBL-1 or BC-1 supernatant. HHV-8+ EBV+ LCLs were tested after various passages for the presence of EBV and HHV-8 DNA by PCR (Fig. 1). Both EBV and HHV-8 were present in all cell lines derived from PBMC of EBV+ donors infected with supernatant of the HHV-8+ cell lines BC-1 and BCBL-1, as well as in cell lines derived from EBV− donors infected with supernatant of BC-1 cells. In the experiment in Fig. 1, two LCLs, ABEH-1 and GMEH-1, were tested after 3, 6, 9, 12, 15, and 18 passages.

FIG. 1. Persistent infection of LCLs by HHV-8 and EBV. Viral DNAs in the LCLs ABEH-1 and GMEH-1 were detected by PCR from passages 3 to 21 by using either EBV (BALF5, 343 bp)- or HHV-8 (K12, 196 bp)-specific primers. Cellular DNA was extracted after the indicated number of passages, and 500 ng of each DNA preparation was used in an unnested PCR of 30 cycles. One-tenth of the PCR mixture was applied to a 2% agarose gel and visualized after ethidium bromide staining.

Preparation of RNA and RT-PCR. RNA was extracted from 106 cells with Tri Reagent (Molecular Research Center, Cincinnati, Ohio) as specified by the manufacturer. A 5-μg portion of total RNA in 10 μl of water and 1 μg of oligo(dT)18 primer was heated to 70°C for 10 min and then cooled to 4°C on ice. A 10-μl volume of reaction mixture (100 mM Tris-HCl [pH 8.3], 6 mM MgCl2, 150 mM KCl, 1 mM each deoxynucleoside triphosphate [Boehringer, Mannheim, Germany], 100 ng of each primer, and 5 U of Taq polymerase (Perkin-Elmer Cetus, Branchburg, N.J.) was added, and the mixture was cycled in a DNA thermal cycler 2400 for 30 cycles of amplification (96°C for 1 min; 60°C for 1 min; 72°C for 1 min). One-tenth of the PCR products were analyzed on 2% agarose–40 mM Tris acetate–1 mM EDTA–13% PAGE–visualized with ethidium bromide staining. The oligonucleotide primers used in this study were K12for (Boehringer, Mannheim, Germany), 30 U of RNase inhibitor [MBI Fermentas, Vilnius, Lithuania], 200 U of Taq polymerase and K12 cloned into pBluescript KS Il II were used, respectively.

Preparation of RNA and RT-PCR. RNA was extracted from 106 cells with Tri Reagent (Molecular Research Center, Cincinnati, Ohio) as specified by the manufacturer. A 5-μg portion of total RNA in 10 μl of water and 1 μg of oligo(dT)18 primer was heated to 70°C for 10 min and then cooled to 4°C on ice. A 10-μl volume of reaction mixture (100 mM Tris-HCl [pH 8.3], 6 mM MgCl2, 150 mM KCl, 1 mM each deoxynucleoside triphosphate [Boehringer, Mannheim, Germany], 100 ng of each primer, and 5 U of Taq polymerase. The mixture was cycled in a DNA thermal cycler 2400 for 30 cycles of amplification (96°C for 1 min; 60°C for 1 min; 72°C for 1 min). One-tenth of the PCR products were analyzed on 2% agarose–40 mM Tris acetate–1 mM EDTA–13% PAGE–visualized after ethidium bromide staining. The oligonucleotide primers used in this study were K12for, K12rev, VP23rev (5′ cgcggatccc 3′), Actrev (5′ cgggatccc 3′), and Epolrev (5′ cgcggatccc 3′), respectively. The amplified products were digested with BamHI and HindIII and visualized after ethidium bromide staining.

Flow cytometry. To analyze the surface phenotype of LCLs, BC-1 and BCBL-1 cells (3 × 107) were washed in phosphate-buffered saline (PBS) and FACScan buffer (PBS containing 2.5% FCS and 0.02% sodium azide) and stained directly with anti-CD3-phycoerythrin (PE), anti-CD14-PE, anti-CD16-PE, anti-CD19-PE, anti-CD56-PE (PharMingen, Hamburg, Germany), anti-IgG-fluorescein isothiocyanate (FITC), and anti-IgM-FITC (Sigma). Isotype controls were included in each assay. For indirect staining, cells were incubated first with mouse anti-CD19, anti-CD20, anti-CD23, or anti-CD30 (Dako Diagnostika, Hamburg, Germany) and then with goat anti-mouse IgG-FITC (Dianova, Hamburg, Germany). As the negative control, only goat anti-mouse IgG-FITC was used in each assay. The cells were washed three times and analyzed on a FACScan with CellQuest software (Becton Dickinson, San Jose, Calif.). Immunofluorescence and confocal microscopy. After stimulation for 24 h with TPA and n-butyrate as described above, the cells were dried on polyl-lysine-coated coverslips (Milenheim, Bad Mergenheim, Germany), fixed with acetone, and blocked for 1 h with 5% FCS in PBS. After incubation for 1 h with monoclonal antibody (Mab) vp4G2 (anti-HHV-8 VP23), kap5C4 (anti-HHV-8 K12), or 817 (anti-EBV VCA) (Chemicon, Temecula, Calif.) diluted in 5% FCS in PBS, the cells were incubated for 2 h with Cy3-conjugated goat anti-rat IgG or goat anti-mouse IgG (Sigma) diluted 1:200 in 5% FCS in PBS. Mabs vp4G2 (23a) and kap5C4 (21a) were generated as described elsewhere. The cells were washed and examined under a TEC confocal microscope DMIRB (Leica, Bensheim, Germany).
and found to be positive for both EBV and HHV-8 with no apparent decline in viral load. Four immortalized HHV-8+ EBV+ cell lines are continuously kept in culture for currently more than 25 passages and longer than 9 months. The other HHV-8+ EBV+ cell lines were frozen in liquid nitrogen since they appeared to be similar. Once the HHV-8+ EBV+ cell lines were established, there was no difference in terms of the efficiency of long-term culture in comparison to EBV+ LCLs.

FIG. 2. Expression of the B-cell antigen CD19 on HHV-8+ EBV+ LCLs. HHV-8+ EBV+ LCLs (ABEH-1 and GMEH-1), EBV+ HHV-8+ LCLs (ABE-1 and GME-1), BC-1, and BCBL-1 were stained with anti-CD3, anti-CD14, anti-CD16, and anti-CD19 MAb. Isotype controls were included in each assay. Flow cytometry was performed by gating on 10,000 living cells.
All four cell lines kept in continuous cell culture for more than 9 months were found to be positive for both EBV and HHV-8. Furthermore, none of the HHV-8* EBV+ LCLs have become negative for either HHV-8 or EBV thus far.

Phenotypic analysis of EBV **HHV-8** **LCLs.** Next, we determined the phenotype of the immortalized cell lines. All HHV-8* EBV+ LCLs tested were positive for CD19 (B-lymphocyte antigen) but negative for CD3 (T-lymphocyte marker), CD14 (monocytes/macrophages), and CD16 (NK cells) (Fig. 2), indicating that these cells are of B-lymphocyte origin. Moreover, HHV-8* EBV+ LCLs expressed surface IgM, as well as B-cell activation markers CD23, CD30, and CD56 similarly to HHV-8* EBV+ LCLs (Table 2).

Latent infection of transformed B-cell lines by HHV-8. We next tested HHV-8* EBV+ LCLs for expression of the latent viral transcript T0.7, which codes for kaposin. T0.7 was detected in the noninduced HHV-8* EBV+ LCLs GMEH-1 after 5, 10, and 15 passages by RT-PCR, and expression could be increased by induction with phorbol ester and n-butyrate (Fig. 3). The signal resulting from the amplification of actin mRNA was similar for all samples tested, indicating that the RNA content was comparable. The RT-PCR result was confirmed by Northern blot analysis, which revealed the presence of T0.7 in unstimulated ABEH-1 and GMEH-1 cells after more than 25 passages. In accordance with the RT-PCR results, the viral capsid protein VP23 was detected by immunofluorescence with the MAb vp4G2 in cells of the HHV-8* EBV+ LCL ABEH-1 and in BCBL-1 cells. No reactivity was seen with B95-8 (Fig. 4) and EBV+ LCLs of the same donors (data not shown), indicating that there was no cross-reactivity with EBV proteins. Reactivity against EBV VCA was detected in B95-1 and in ABEH-1 cells but not in BCBL-1 cells.

Serial passage of HHV-8 from HHV-8 **EBV** **LCLs.** Since lytic HHV-8 genes could be induced in HHV-8* EBV+ LCLs, we hypothesized that HHV-8* EBV+ LCLs are able to produce infectious viral particles and infect new cells. PBMC of an EBV+ donor were incubated with supernatants of HHV-8* EBV+ and EBV+ LCLs (Table 3). As anticipated, supernatants of the EBV+ LCLs ABE-1 and GME-1 immortalized B cells. Intriguingly, incubation with supernatants of HHV-8* EBV+ LCLs also promoted the outgrowth of cell lines, whereas control supernatant of Raji cells or culture medium had no such effect. Six second-generation cell lines were established for each supernatant, and one second-generation cell line of each supernatant was tested by immunofluorescence analysis after two passages. Cell lines that were derived from PBMC incubated with supernatant of ABE-1 and GME-1 cells were found to be positive for EBV VCA and negative for HHV-8 kaposin. Cell lines that were derived from PBMC incubated with supernatant of cells of the HHV-8* EBV+ LCLs ABE-1 and GME-1 were positive for both HHV-8 kaposin and EBV VCA, indicating that HHV-8 has been transferred to these cells.

DISCUSSION

In this study, we were able to show that (i) peripheral blood B lymphocytes can be persistently infected by HHV-8 in vitro, (ii) HHV-8 supports transforming activity of EBV on B cells, and (iii) infection leads to the outgrowth of permanent HHV-8* EBV+ LCLs. Infection of PBMC with EBV in vitro results in the immortalization of B cells and the generation of EBV+ LCLs. In vivo, EBV infection causes a primary infection known as mononucleosis followed by a lifelong persistence of EBV in a latent state in B lymphocytes. The frequency of EBV-infected B cells in the peripheral blood was reported to be be-

![Image](https://via.placeholder.com/150)

FIG. 3. Detection of latent HHV-8 transcripts in noninduced, and lytic HHV-8 transcripts in induced, HHV-8* EBV+ LCLs. RT-PCR analysis of EBV+ HHV-8* LCL GMEH-1 was performed after 5, 10, and 15 passages either with or without induction by TPA and sodium butyrate. The RT reaction was performed by oligo(dT) priming followed by PCR with gene-specific primers for the latent T0.7 transcript (196 bp), the lytic viral mRNA VP23 (917 bp), and actin mRNA (245 bp) as a control. As negative and positive PCR controls, water and plasmid DNAs of full-length cDNA of VP23, actin, and K12 were used, respectively.

TABLE 2. Surface phenotype of HHV-8* EBV+ and EBV+ LCLs

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Presence of:</th>
<th>IgG</th>
<th>IgM</th>
<th>CD20</th>
<th>CD23</th>
<th>CD30</th>
<th>CD56</th>
<th>CD80</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEH-1 (HHV-8* EBV+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ABE-1 (HHV-8* EBV+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>GMEH-1 (HHV-8* EBV+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>GME-1 (HHV-8* EBV+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>BC-1 (HHV-8* EBV+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>BCBL-1 (HHV-8* EBV+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

*CD20, mature B cells and pre-B cells, not plasma cells (B1); CD23, mature and/or activated B cells (low-affinity IgM receptor); CD30, activated B and T cells (TNF receptor superfamily); CD56, inter leukin-2-dependent T-cell clones, NK cells (NCAM); CD80, activated B and T cells (B7-1 costimulatory molecule). Expression of surface molecules was determined by immunofluorescence with either FITC-conjugated polyclonal antibodies (IgG and IgM) or PE-conjugated MAbs (CD20, CD23, CD30, CD56, and CD80).
EBV present in isolated PBMC can lead to the spontaneous outgrowth of immortalized cells without the addition of EBV-containing supernatants; however, a minimal number of cells must be used (22, 23). In the experiments shown here, the number of cells used was not sufficient for spontaneous outgrowth of EBV LCLs (Table 1). In PBMC of none of the eight donors tested did culture medium or Raji cell supernatant (Raji cells contain EBV genomes but cannot produce infectious EBV) alone lead to the outgrowth of immortalized B-cell lines. In contrast, supernatants of BCBL-1 cells containing HHV-8 induced the outgrowth of LCLs in PBMC of all four EBV donors but not in PBMC of EBV donors.

The LCLs were persistently HHV-8 and EBV infected and possessed the phenotype of activated B cells, similar to EBV donors. Thus, HHV-8 infects EBV donors, but only if BC-1 supernatants containing HHV-8 and EBV were used. HHV-8 could also be transferred to PBMC from EBV donors, but not both viruses in the outgrowth of LCLs in PBMC of all four EBV donors but not in PBMC of EBV donors.

The LCLs were persistently HHV-8 and EBV infected and possessed the phenotype of activated B cells, similar to EBV donors. Thus, HHV-8 infects EBV donors, but only if BC-1 supernatants containing HHV-8 and EBV were used. HHV-8 could also be transferred to PBMC from EBV donors, but not both viruses in the outgrowth of LCLs in PBMC of all four EBV donors but not in PBMC of EBV donors.

HHV-8 INFECTION OF EBV-POSITIVE B LYMPHOCYTES

FIG. 4. Detection of the HHV-8 protein kaposin in noninduced, lytic HHV-8 minor capsid protein VP23 and the lytic VCA of EBV in induced HHV-8 EBV ABEH-1 LCLs. EBV+ HHV-8+ LCL ABEH-1 (a to f), BCBL-1 (g to l), and B95-8 (m to r) were either stained with MAb kap5C4 (b, h, and n), MAb Vp234G2 (d, j, and p) or MAb directed to VCA of EBV (f, l, and r) after fixation with acetone. Cells stained with kap5C4 were noninduced, whereas cells stained with MAb VP234G2 or anti-VCA of EBV were induced with TPA and sodium butyrate. Bound antibodies were visualized with Cy3-conjugated goat anti-rat IgG or goat ant-mouse IgG and examined under a Leica TNT confocal microscope.

TABLE 3. Serial passage of HHV-8 from HHV-8 EBV- LCLs to PBMC of an EBV donor

<table>
<thead>
<tr>
<th>Supernatant</th>
<th>LCL outgrowth</th>
<th>Expression of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HHV-8 kaposin</td>
</tr>
<tr>
<td>Control</td>
<td>–</td>
<td>ND*</td>
</tr>
<tr>
<td>Raji</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>ABEH-1</td>
<td>0.18</td>
<td>+</td>
</tr>
<tr>
<td>ABE-1</td>
<td>45</td>
<td>–</td>
</tr>
<tr>
<td>GMEH-1</td>
<td>1.4</td>
<td>+</td>
</tr>
<tr>
<td>GME-1</td>
<td>35</td>
<td>–</td>
</tr>
</tbody>
</table>

*Supernatants were prepared from ABEH-1 LCLs at passage 18, ABE-1 LCLs at passage 14, GMEH-1 LCLs at passage 23, and GME-1 LCLs at passage 14 as described in Materials and Methods.

*Expressed as 10^2 outgrowing LCLs at the highest dilution.

*Expression of HHV-8 kaposin and EBV VCA on outgrowing cells was determined by immunofluorescence with the MAbs kap5C4 and 817, respectively.

*ND, not done.
it appears to depend on an EBV-derived cofactor, at least under the conditions we used. An alternative explanation might be a two-step transformation process, divided into an initiating step and a maintaining step. In this case, the virus supplying the initiating step should be lost at least in some cell lines, since there is no selection for it. At the moment, however, we have no evidence for this explanation. Interestingly, HHV-8 has no homologs to EBNA3s, LMPs, and EBERs; however, there are several other candidates for transforming genes like v-IgL (29, 33), cc-chemokines (21), G-protein-coupled receptor (3, 12), v-cyclin (7, 8, 17), K1 (14), interferon regulatory factor (29, 31), kaposin (32), v-FLIP (46), LANA (36), and v-bcl-2 (9). Thus, the mechanism by which HHV-8 supports transformation might be different from that for EBV.

It is known that peripheral blood B lymphocytes can be infected by HHV-8 in vivo in KS patients and healthy individuals (1, 10, 25). At present, there is no evidence that these cells are doubly infected by HHV-8 and EBV in vivo (4). In contrast, almost all of the PEL tumors are positive for both EBV and HHV-8, implying that double infection could play a causal role in this entity. In KS, only a minority of tumors are positive for EBV. Thus, it is unlikely that both viruses in concert play a role in tumorigenesis of KS. The primary target cell of HHV-8 infection is not yet known. This study provides some evidence that B cells could be the primary reservoir and the place of latency in HHV-8-infected individuals with and without KS. It presents a model system of HHV-8 infection in vitro and might give some clues about the role of B-cell infection in the pathogenesis of HHV-8.

ACKNOWLEDGMENTS

We acknowledge the expert technical assistance of C. Atzler. Cell lines BC-1 and BCBL-1 were kindly provided by Patrick Moore and Don Ganem, respectively.

S.K. was supported in part by a scholarship from the Graduiertenkolleg "Infektion und Immunität" of the Deutsche Forschungsgemeinschaft.

REFERENCES

