Disease-Associated Prion Protein in Vessel Walls

Citation for published version:

Digital Object Identifier (DOI):
10.1016/S0002-9440(10)64474-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
American Journal Of Pathology

Publisher Rights Statement:
© 2002 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Short Communication

Disease-Associated Prion Protein in Vessel Walls

Oskar Koperek,* Gábor G. Kovács,† Diane Ritchie,‡ James W. Ironside,† Herbert Budka,* and Georg Wick‡

From the Institute of Neurology,* University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria; the National Creutzfeldt-Jakob Disease Surveillance Unit† and the Department of Pathology, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom; and the Institute of Pathophysiology,‡ University of Innsbruck Medical School, and the Institute for Biomedical Aging Research, Austrian Academy Science, Innsbruck, Austria

Human prion diseases like Creutzfeldt-Jakob disease are infectious, inherited, or sporadic neurodegenerative disorders, characterized by the accumulation of an abnormal isoform of the host-encoded prion protein. This affects nervous tissue in sporadic Creutzfeldt-Jakob disease and, additionally, in lymphoid tissue in bovine spongiform encephalopathy-linked variant Creutzfeldt-Jakob disease. Experimental studies have established the involvement of cells of the lymphoid and peripheral nervous system in the transport of prions to their target central nervous system tissue. To evaluate the role of vessel wall-associated mobile cells, we obtained formalin-fixed tissue blocks from various brain regions and/or basal arteries from sporadic, variant and iatrogenic Creutzfeldt-Jakob disease, and unselected control cases.

Materials and Methods

Case Selection

Formalin-fixed, paraffin-embedded tissue blocks from the cerebral cortex, basal ganglia, thalamus, brain stem, cerebellum and/or basal arteries from sporadic, variant and iatrogenic Creutzfeldt-Jakob disease, and unselected control cases. We demonstrate disease-associated prion protein deposits in intracranial vessel walls, in sporadic and variant Creutzfeldt-Jakob disease by performing immunohistochemical staining and paraffin-embedded tissue blotting. Using double immunofluorescence, these deposits colocalize with HLA-DR and S-100 immunoreactive cells in the intima, which are components of the vascular-associated dendritic cell network, as well as with HLA-DR and CD-68 immunopositive macrophages of the intima and media. We conclude that mobile cells in vessel walls like dendritic and monocyte/macrophage lineage cells may be involved in spread of disease-associated prion protein and possibly also of infectivity.

Supported by the Austrian Science Fund (Fonds zur Foerderung der Wissenschaftlichen Forschung No. P14584-PSY to H.B. and FWF No. 14741 to G.W.), and belongs to the framework of the European Union-funded project “Human TSEs: The Neuropathology Network (PRIONET).”

Oskar Koperek and Gábor G. Kovács contributed equally to this paper.

Accepted for publication August 22, 2002.

Address reprint requests to Professor Herbert Budka, Institute of Neurology, AKH 4J, Waehringer Guertel 18–20, POB 48, A-1097 Vienna, Austria. E-mail: H.Budka@akh-wien.ac.at.

Prion diseases (PrD) are infectious, inherited, or sporadic neurodegenerative disorders. Beside the classical neuropathological triad (spongiform change, astrogliosis, and neuronal loss), PrD are characterized by the accumulation of an abnormal isoform of the host-encoded prion protein (PrP).

In human PrD, this affects nervous tissue in sporadic Creutzfeldt-Jakob disease (sCJD) as well as in lymphoid tissue in bovine spongiform encephalopathy-linked variant Creutzfeldt-Jakob disease (vCJD). Tissue-related diagnosis of PrD can be achieved by post-mortem examination of the brain and also by detection of disease-associated prion protein (PrPSc) in lymphoid tissue biopsy in vCJD.

Detection of PrPSc in blood samples as a specific diagnosis for PrD would require its transport across vessel walls. As PrPSc is postulated as the infectious particle in PrD, this transport can also be interpreted as spread of infectivity. Blood transfusion is not considered to carry a risk in sporadic cases, although it may transmit disease in acquired PrD. To evaluate this pathway we examined intracranial and extracranial vessels in different PrD subtypes, and we demonstrate the presence of PrPSc in vessel walls.
tigated extracranial segments of carotid artery and/or ascending aorta as well.

Immunocytochemistry

For detection of PrPSc, we stained sections with 3F4 (monoclonal, 1:500, Senetek PLC, Napa, CA, USA) after a threestep tissue pretreatment, including 10 minutes of hydrated autoclaving at 121°C, 5 minutes of 96% formic acid, and 2 hours of 4 mol/L guanidine thiocyanate at 4°C. In cases with immunoreactivity (IR) in the vessel wall, we then obtained adjacent sections and used antibodies 6H4 (monoclonal, 1:100, Prionics, Zurich, Switzerland) and 12F10 (monoclonal, 1:1000, CEA, Fontenay-aux-Roses, France). To characterize labeled cells, we performed immunostaining for HLA-DR (CR3/43, monoclonal, 1:100, DAKO, Glostrup, Denmark), CD 68 (KP1, monoclonal, 1:100, DAKO), and S100 (polyclonal, 1:200, DAKO). As a secondary system, we used the ChemMate detection kit (DAKO). Negative controls included omission or substitution of primary antibodies by nonspecific, isotype-matched antibodies.

Double Immunofluorescence

Double immunofluorescent labeling was evaluated by a Zeiss LSM 510 confocal laser microscope. The fluorescent-labeled secondary antibody for anti-PrP antibodies was Alexa Fluor 488 goat anti-mouse IgG (1:200 Molecular Probes, Eugene, OR, USA), for HLA-DR and CD68 we used Alexa Fluor 633 goat anti-mouse IgG (1:200, Molecular Probes), and for S-100 Alexa Fluor 633 goat anti-rabbit IgG (1:200, Molecular Probes) was utilized. We used argon 488-nm and helium/neon 633-nm lasers to elicit immunofluorescent staining. For nucleic acid counterstain we used SYTOX orange nucleic acid stain (1:1000, Molecular Probes) and a helium/neon 543-nm laser.

Paraffin-Embedded Tissue Blot

Paraffin-embedded tissue (PET) blot was performed on basal intracranial arteries from one sCJD and extracranial carotid and aorta from one vCJD case. Paraffin-embedded tissue sections were placed onto nitro-cellulose
membrane for detection of PrPSc using the antibody 3F4 (monoclonal, 1:500, DAKO, Denmark) after proteinase K digestion. Labeling was carried out following the protocol of Schulz-Schaeffer et al,7 with the alkaline phosphatase-coupled rabbit anti-mouse antibody replaced by an avidin-biotin system. A negative control, in which the primary antibody was omitted, was included for each section examined. Labeling was observed using a stereoscopic microscope.

Results

Using specific pretreatment and an immunostaining procedure for PrPSc,8 we observe focal granular PrP IR in intracranial vessel walls of 6 of 30 sCJD, 3 of 17 vCJD, and none of the iCJD and control cases. It locates predominantly to the media of deep perforating and occasionally of meningeal and basal arteries (Figure 1a) as well as of small parenchymal vessels. Rarely do we observe it in the intima. We do not observe a correlation between PrP deposits in the brain parenchyma (eg, diffuse/synaptic, plaque) and presence of vessel wall PrP IR. In cases where we find PrP deposits in the vessel wall, it can be seen most often in more than one vessel and in different brain regions, whereas in other cases (iCJD), serial sections covering about 100 μm did not reveal PrP vessel wall deposits. In addition, perivascular PrP deposits are not only predominant in vCJD (Figure 1b) and iCJD, but also in sCJD cases. Nevertheless, as we rarely found more extensive PrP aggregates throughout the vessel wall (Figure 1c), we excluded their amyloid nature by the absence of congophilia and birefringence.

In extracranial carotid (Figure 1d) and ascending aorta we observe fine granular PrP IR in 2 of 2 vCJD, 0 of 3 of sCJD cases, and 0 of 2 controls. This is rather wide-spread and predominates in the outer part of the media and less in the intima and inner part of the media.

Using the PET blot, small, intense areas of PrP positivity are also observed within the intracranial vessels in one case of sCJD, selected from the six immunocytochemically positive sCJD cases. In many of the vessels, these intense clustered deposits appear to follow a linear pattern of labeling (Figure 2). Extracranial carotid and aorta vessels in one vCJD case, selected from the two immunocytochemically positive vCJD cases, were found to be negative for PrP using the PET blot.

In adjacent sections of intracranial vessels and in double-immunofluorescent labeling, PrP deposits, in part, co-localize in the perivascular area and in the media of vessels with CD68 IR (Figure 1f and Figure 3,a–d) cells, and in the intima with HLA-DR IR and CD68 IR (Figure 1e and Figure 3, e–h) or S-100 IR cells (Figure 3, i–l).

Discussion

Here we demonstrate the presence of PrP IR in vessel walls. We think that this represents predominantly PrPSc. We did not see similar IR in control cases, moreover, isotype antibody controls were negative. All three applied monoclonal anti-PrP antibodies, including 6H4 and 12F10 that we recently showed to be most reliable for PrPSc detection,8 immunostained these deposits. Furthermore, PET blot studies fully support the immunocytochemical findings in the intracranial vessels, and confirm that protease-resistant PrP is present within the wall of the vessels in a focal distribution, consistent with the localization also demonstrated by double-immunofluorescence labeling. This type of PrP IR in vessel walls must be differentiated from that seen in stop mutation at codon

Figure 2. Small, intense foci of disease-associated PrP positivity within the intracranial vessels in sporadic Creutzfeldt-Jakob disease visualized by the PET blot technique (a). These intense clustered deposits appear to follow a linear pattern of labeling (b). The control section for these in which the antibody was omitted is shown in (c). Magnification, ×60.
145 of the PRNP^9 since the presently described form lacks amyloid features.

The PET blot studies on two extracranial vessels of one vCJD case were unable to demonstrate protease-resistant PrP. The immunocytochemical findings in these vessels are therefore of uncertain significance at present. Possible explanations include up-regulation of the normal cellular isoform of the protein, or a conformational transition of PrP which is protease-sensitive but disease-associated, as has been recently described using conformation-dependent immunoassay in hamsters inoculated with different scrapie strains.10 However, the most likely explanation might be that the very fine granular PrP deposits seen by immunocytochemistry are not visible in a "gross" method such as a PET blot. Further studies (including Western blot analysis and experimental transmission) are required to investigate these intriguing possibilities.

We did not detect any vessel wall PrP IR in the four iCJD cases. On one hand we examined only few cases, but, on the other hand, we performed serial sectioning covering about 100 µm without any result. In any case, we cannot exclude the possibility of missing focal PrP deposits in these vessels. The reason for not detecting PrP-IR in iCJD, if confirmed, remains obscure at present. Intracranial vessel wall PrP deposits may represent PrP^Sc derived from the periarterial interstitial fluid, which joins the cerebrospinal fluid that may harbor PrP^Sc in some, but not all, CJD cases.11,12 Our results resemble the findings in Alzheimer’s disease, where β-amyloid deposits are seen intracranially but not in extracranial arteries. It is suggested that β-amyloid, often located perivascularly, follows interstitial fluid drainage along the periarterial space of intracerebral, leptomeningeal arteries, and intracranial carotid to join deep cervical lymph nodes.14

The MHC class II antigen HLA-DR is expressed on numerous immunocompetent cells in the vasculature, including dendritic cells and macrophages.15 We identified one PrP^Sc-associated cell type in the vessel wall and perivascular area as CD68-positive macrophages, which
have a scavenger role in the central nervous system.16,17
Macrophages are important in scrapie pathogenesis. They may take up PrPSc, sequester scrapie infectivity, and impair early scrapie agent replication,18–20 or might be vehicles for exporting PrPSc from the brain to the periphery.

In a recent study, occasional perivascular macrophages surrounding cortical capillaries were PrP-immunoreactive in some non-PrD cases,21 proposing that they express PrPC. The abundant aggregated PrP deposits in the perivascular area (Figure 1b), some of which were related to CD68 IR cells, can be distinguished from these, as they represent disease-associated PrP deposits that are absent in non-PrD cases. Perivascular macrophages of the brain have a high rate of turnover by bone marrow-derived blood cells22,23 and might represent a pathway for neuroinvasion of vCJD that is alternatively spread.

In addition to neural tissue, S-100 is expressed in vascular-associated dendritic cells (VADC).24 Dendritic cells are potentially mobile, antigen processing, and presenting cells with endocytic and lysosomal activity,25 and thus are ideal candidates for transport of the infectious agent. VADCs, a network of which is known to be present in arterial vessels of healthy individuals25 are also related to atherosclerotic lesions with a possible role of T-cell activation.26 Dendritic cells can migrate via the blood to the spleen or via lymph into lymph nodes where they are known as interdigitating cells. Close contact between VADCs and macrophages suggest a possible interaction between these cell types processing immunological information. VADCs may also migrate across vessel walls (to eg, lymphoid tissue). Thus, they might serve as common link between pathogenic events in the periphery as well as in neuroinvasion of prion diseases.28,29

We widen the spectrum of tissues which contain PrPSc. Immunocompetent cells of vessel walls may participate in PrPSc production (analogously to follicular dendritic cells) and/or transport. As these cells might be in contact with both neural and extraneural tissue, our results raise the possibility of mobile cell-related spread of PrPSc and infectivity. Early detection of abnormal PrP in lymphoreticular tissues of gastrointestinal tract in mice after intracerebral inoculation of the CJD agent supports this theory.29–31 In addition to established extraneural tissue infectivity in vCJD,32 the occasional infectivity of extraneural tissues of sCJD patients12 might result from this kind of PrPSc transport. Furthermore, our results suggest that PrPSc may be present in the blood, albeit in sCJD probably at very low levels. Moreover, this encourages the rationale for blood-based prion diagnostics using sensitive detection methods like protein misfolding cyclic amplification.33

Acknowledgments
We thank Ms. Helga Flicker and Michaela Strohschneider for the excellent technical work.

References
23. Williams K, Alvarez X, Lackner AA: Central nervous system perivas- 
cular cells are immunoregulatory cells that connect the CNS with the 
 peripheral immune system. Glia 2001, 36:156–164
24. Glatzel M, Aguzzi A: PrP(C) expression in the peripheral nervous 
system is a determinant of prion neuroinvasion. J Gen Virol 2000, 
81:2813–2821
25. Millonig G, Niederegger H, Rabl W, Hochleitner BW, Hoefer D, Ro-
mami N, Wick G: Network of vascular-associated dendritic cells in 
intima of healthy young individuals. Arterioscler Thromb Vasc Biol 
2001, 21:503–508
27. Bobryshev YV, Lord RS: Mapping of vascular dendritic cells in ath-
erosclerotic arteries suggests their involvement in local immune-in-
28. Sozzani S, Allavena P, Vecchi A, Mantovani A: The role of chemokines in 
of CJD from brain to gut at early stages of infection. BMC Infect Dis 
2001, 1:20
30. Bons N, Mestre-Frances N, Belli P, Cathala F, Gajdusek DC, Brown P: 
Natural and experimental oral infection of non-human primates by 
bovine spongiform encephalopathy agents. Proc Natl Acad Sci USA 
1999, 96:4046–4051
31. Lemaire-Vieille C, Schulze T, Podevin-Dimster V, Follet J, Bailly Y, 
Blanquet-Grossard F, Decavel JP, Heinen E, Cesbron JY: Epithelial 
and endothelial expression of the green fluorescent protein reporter 
gene under the control of bovine prion protein (PrP) gene regulatory 
sequences in transgenic mice. Proc Natl Acad Sci USA 2000, 97: 
5422–5427
32. Bruce ME, McConnell I, Will RG, Ironside JW: Detection of variant 
Creutzfeldt-Jakob disease infectivity in extraneural tissues. Lancet 
33. Saborio GP, Permanne B, Soto C: Sensitive detection of pathological 
prion protein by cyclic amplification of protein misfolding. Nature 
2001, 411:810–813