Quality of randomised controlled trials in head injury. Trials in head injury are more complex than review suggests

Citation for published version:
Murray, GD & Teasdale, GM 2000, 'Quality of randomised controlled trials in head injury. Trials in head injury are more complex than review suggests' BMJ, vol 321, no. 7270, pp. 1223. DOI: 10.1136/bmj.321.7270.1223

Digital Object Identifier (DOI):
10.1136/bmj.321.7270.1223

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMJ

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Letters

GMC’s proposals for revalidation would not be accurate, economical, or fair

Editor—To anyone involved in assessing medical competence, the General Medical Council’s proposal for revalidation is potentially unfair and inaccurate, and very expensive.1

The proposal has two parts. The first—annual appraisal—is uncontroversial; it can be helpful.2 The second is a summative assessment every five years, aggregating the appraisals, which is reviewed by two doctors from the appraisee’s field and a lay person; collectively they determine whether to recommend revalidation. This does not lead to de-registration: it acts as a sieve, seeking to identify potentially inadequate doctors, who would then undergo further assessment under the performance procedures devised by Southgate et al.3 It is the sieve that is inappropriate.

One difficulty in assessment is making it fair between candidates. In examinations, this requires minimisation of inter-examiner variables—for example, the same assessors judge the same attributes of all candidates—and thorough training of assessors. The General Medical Council proposes an individual group of assessors for each doctor’s review. The levels of judgment of the assessors will differ considerably, each group being different. Serious training for all assessors for the thousands of candidates assessed annually (extraordinarily, the council cannot indicate numbers) seems improbable: an assessment of osteopaths’ portfolios required up to three days’ training for assessors (B Jolly, personal communication).

Portfolio assessment has good face validity and may be useful when used formatively.4 Few evaluations have been conducted of it; research in the medical field suggests that it is subject to assessor bias and is unreliable and inaccurate.5 Estimates of the time needed for the review (involving three examiners examining five-year portfolios and interviewing the appraisee; say five days for each professional to consider the submission, interview, and report and five days’ preparation for the appraisee) suggest a cost of at least £50m a year, or an opportunity cost of around 1% of clinicians’ time. This is an enormous expense to identify, inaccurately, those doctors to subject to further assessment.

Peer associate ratings, used in the United States,6 could be quicker and more accurate but might be inappropriate for some groups—for example, singlehanded general practitioners. But one could readily devise a paper based assessment exercise of a maximum one day’s duration as a sieve towards the performance procedures. Though not directly assessing performance, it would tap measures of clinical competence best predicting clinical performance, assessing ethical and communication issues, as well as knowledge and problem solving. It would allow the appraisals to remain formative. And it would be accurate, economical of time and money, and fair.

Anyone for testing?

Richard Wakeford
convenor of Cambridge conferences on medical education
Hughes Hall, Cambridge CB1 2EW
rew5@admin.cam.ac.uk

BMA approves acupuncture

BMA report is wrong

Editor—The BMA report on acupuncture is regrettable. It suggests, among other things, that acupuncture is effective for back pain, dental pain, and migraine. Three recent systematic reviews show the importance of basing judgments on high quality information.

For back pain, four randomised and blind studies showed no benefit; five open studies showed benefit.1 The BMA’s conclusion that acupuncture was effective in back pain was based on all nine studies.

For dental pain, a review of 16 studies concluded that it was effective.2 Many of these were not randomised, were not blind, or had major flaws. Only three small studies were adequate, and these showed no convincing benefit.3

For migraine, trials showing a significant benefit from acupuncture were inadequately randomised or not blind.4 The reviewers themselves were highly circumspect about ascribing any clinical significance to acupuncture.

The BMA report concluded that results for acupuncture are inconclusive in other conditions. These are weasel words. For smoking cessation the 12 month cessation rate with acupuncture was 14% (95% confidence interval 11% to 17%), which was no different from the placebo response with nicotine gum of 12% (11% to 13%).5

Trials of acupuncture suffer problems of poor quality, which leads to bias. Reviews with poor quality studies overestimate treatment effects. Original reports may come to the wrong conclusion from their own data, a fact true of two of 13 studies of acupuncture in neck and back pain.6

For those areas where the BMA report thought there was evidence of effectiveness of acupuncture, either there was none or what quality evidence there was indicated lack of effectiveness. For those areas where the BMA thought the results inconclusive, there was either no useful information or acupuncture was shown to be ineffective.

Doctors should beware. There is no useful evidence showing that acupuncture helps; there is evidence that it harms. Perhaps the important point is that we

Advice to authors

We prefer to receive all responses electronically, sent either directly to our website or to the editorial office as email or on a disk. Processing your letter will be delayed unless it arrives in an electronic form.

We are now posting all direct submissions to our website within 24 hours of receipt and our intention is to post all other electronic submissions there as well. All responses will be eligible for publication in the paper journal.

Responses should be under 400 words and relate to articles published in the preceding month. They should include ≤3 references, in the Vancouver style, including one to the BMJ article to which they relate. We welcome illustrations.

Please supply each author’s current appointment and full address, and a phone or fax number or email address for the corresponding author. We ask authors to declare any competing interest. Please send a stamped addressed envelope if you would like to know whether your letter has been accepted or rejected.

Letters will be edited and may be shortened.

should not deceive ourselves, or people who trust our recommendations. There is no gold standard evidence that acupuncture improves pain or anything else. The BMA report is quite simply wrong.

R A Moore consultant
biochemistandrew.moore@pru.ox.ac.uk

H J McQuay professor of pain relief
A D Oldman research associate
L E Smith research associate
Pain Research and Nullfield Department of Anaesthetics, University of Oxford, The Churchill, Oxford OX3 7LJ

5 Smith LA, Oldman AD, McQuay HJ, Moore RA. T easing Group has published a major systematic Cochrane Collaboration Back Review that seems to have been misinterpreted. The

Is approval of acupuncture for back pain really evidence based?

Entorr—The BMA has concluded that acupuncture should be made more widely available to British people through the NHS and that general practitioners should receive training in it.¹ The association seems to base its conclusion on three things: evidence showing that “acupuncture is more effective than control interventions for back pain, nausea and vomiting, migraine and dental pain”;² the fact that 47% of general practitioners have arranged for their patients to receive acupuncture; and the wish of 46% of those professionals to receive training in acupuncture in order to treat their patients.³

The evidence on the effectiveness of acupuncture in the treatment of back pain seems to have been misinterpreted. The Cochrane Collaboration Back Review Group has published a major systematic review of the effectiveness of acupuncture in low back pain.⁴ This review followed a rigorous methodology and an exhaustive search for information. Its results indicated poor research methods and contradictory results from studies of acupuncture in low back pain. The review was therefore incoherent and could not serve as a basis for recommending acupuncture. This was consistent with the results of past systematic reviews and with a randomised trial that compared the effectiveness of acupuncture with that of massage and self care education.⁵

Although scientific evidence in this respect has not changed much in several years, public and medical opinion does seem to have changed. The establishment of a double standard for the approval of a treatment technique, bowing to the pressure of public opinion and not taking into account evidence based recommendations, is harmful to the public’s health and to the economy of the NHS. In time it could also be harmful to the treatment approved with the lower standard and to the credibility of its practitioners and the institutions that recommend it.

Clinical practice is not always based on scientific evidence and the search for an efficient use of resources. Many years ago patients were convinced of the effectiveness of leeches for the treatment of infectious diseases, doctors prescribed them, and apothecaries sold them. Nevertheless, despite public demand and medical interest, evidence of the efficacy, safety, and cost effectiveness of the treatment was lacking. This lesson from the past should be kept in mind.

Francisco M Kovacs, president
Maria Teresa Gil del Real coordinator
Kovacs Foundation, Scientific Department, Palma de Mallorca 07012, Spain

The authors are members of the management committee of the COST B4 programme on unconventional medicine.

1 Silver M. Acupuncture wins BMA approval. *BMJ* 2000; 321:11. (1 July)

Lung cancer and passive smoking

Turning over the wrong stone

Entorr—In their reanalysis of the epidemiological evidence on lung cancer and smoking Copas and Shi assert that after allowing for publication bias the apparent average excess risk of lung cancer from passive smoking would drop from 24% to 15%. Despite the lack of supporting data,² we are asked to believe solely on the basis of statistical inference that such data must be hiding under a stone. They are, however, turning over the wrong stone.

More important than publication bias is the underestimation of risk that occurs when these studies assess exposure solely on the basis of whether non-smokers either lived or did not live with a smoker,³ when other exposure exists.

Where other exposure is common—for example, in childhood, in social situations, or in the workplace—the risk of lung cancer may be seriously underestimated. Spouses of non-smokers exposed in other circumstances will be misclassified as non-exposed, contaminating the referent group, and attenuating the risk estimate. For example, Hackshaw et al estimate that the odds ratio would have been 1.42 (95% confidence interval 1.21 to 1.66) if those with spousal exposure alone were compared with those who were truly unexposed.⁴ By comparison, in a recent meta-analysis of risk associated

Increased risk is not disputed

Entorr—In their paper on lung cancer and passive smoking,¹ Copas and Shi say that in our review of passive smoking and lung cancer there is clear evidence of publication bias and that allowing for this substantially lowers the estimate of relative risk (which we reported as 1.24 before correction for other biases and confounding and 1.26 after correction).² Neither is correct. It is proposed that large studies will tend to be published regardless of their result but small studies published only if they are positive (publication bias). As Copas and Shi point out, studies with a large standard error (indicating a small study) tend to be
associated with a large relative risk (correlation coefficient 0.35, P = 0.03), implying that there may be some unpublished small negative studies. An indication of the size of the effect can be obtained by restricting the analysis to those studies with smaller standard errors which are less susceptible to increase publication bias. If the six studies with the largest standard errors (> 0.5) are excluded there is no evidence for an association between standard error and relative risk (correlation coefficient 0.13, P = 0.48) and the estimate of risk is 1.22; even if the 12 studies with the largest standard errors (> 0.4) are excluded the estimate is 1.23; neither is materially different from the estimate based on all 37 studies (1.24). This indicates that the effect of unpublished studies is likely to be negligible.

There is further evidence against material publication bias in that 32 of the 39 studies reported non-significant results and in 16 (41%) the authors had either concluded that there was no effect (13) or that the evidence was inconclusive (3), suggesting that the passive smoking literature is one with a strong tendency for positive results to be published while negative results remain unpublished. Even if one accepts the calculations of Copas and Shi, their relative risk estimate, which assumes that as many as 20% of all studies are unpublished, is 1.15, not substantially different from our own estimate (1.26) and well within the confidence interval on our result (1.06 to 1.47). Even under the extreme assumption that 40% of studies were not published their estimate (1.11) would still be consistent with ours. Copas and Shi do not dispute that there is an increased risk of lung cancer due to passive smoking nor do they seriously challenge our estimates of its magnitude.

Allan Hackshaw letter writer
a.k.hackshaw@mdx.qmw.ac.uk
Malcolm Law reader
Nicholas Wald professor
Wolfson Institute of Preventive Medicine, Department of Environmental and Preventive Medicine, London EC1M 6BQ

Competing interests: None declared.

Authors’ reply

Editor—We thank the respondents for their comments on our paper. We agree with Johnson and Repace that the truth will be hiding under stones. Some of these stones (causes of bias) were considered in the earlier review by Hackshaw et al. They found that some studies give an increase in risk, others a decrease, and that on aggregate they tend to cancel out. What we have done is to add one more stone (publication bias) and use it to redo their calculation of the overall risk. It is not the wrong stone, just one of several stones.

Johnson and Repace start their letter by asserting that we claim that the excess risk decreases from 24% to 15%. We have not come up with a single best estimate. This is impossible without making assumptions that cannot be proved about how many unpublished studies there are. Our conclusion is that at least some publication bias is needed to explain the trend in the funnel plot, and that allowing for even a small amount of study selection can give a substantially lower figure.

The paper by Bero et al, which we did refer to in our paper, suggests that there is no publication bias. We would emphasise the word “suggest”—neither their arguments nor the fact that no unpublished papers have been found mean that none exists. Our analysis does not dispute that the risk is increased; the question is by how much. Neither do we claim that the unpublished papers were all negative. We can say nothing at all about them, just that there may be a pool of studies from which the ones in the review are a selection. Our method lets the funnel plot tell us how much bias there may have been in this selection.

Just because more people die of heart disease than of lung cancer does not necessarily mean that there are more deaths attributable to passive smoking. A rather similar review by He et al, who are looking at studies of passive smoking and heart disease, comes up with a relative risk of 1.28. Thus, in relative terms, the elevation of risk is fairly similar.

In their letter, Hackshaw et al point out that most of the range of estimates we discuss is within their confidence band. Publication bias is another source of statistical uncertainty but, unlike ordinary sampling variability, acts in the downward direction only. Whatever confidence range is given, it tends to be just the single figure which is remembered. If there is good reason to think this is an overestimate, then surely this needs to be pointed out.

Finally, Cates is right in pointing out that we did not use logarithmic scales in our funnel plot. We decided to plot the raw figures so they could be compared more easily with the various values of relative risk discussed in the earlier article by Hackshaw et al. But this is
just the presentation. Our analysis was in fact based on log relative risks. To keep our paper as simple as possible we omitted all such statisti-
cal technicalities. A complete description of our method, including graphs on logarith-
mic scales, will appear later this year in the new statistical journal Biostatistics.7

John Copas
professor
Jain Qing Shi
research fellow
University of Warwick, Coventry CV4 7AL

Competing interests: None declared.

Quality of randomised controlled trials in head injury

Trials in head injury are more complex than review suggests

Editor—The review by Dickinson and colleagues1 shows a remarkably narrow view of research in head injury and virtually ignores the need to match the design to the research question. Historically, many clinical trials have been underpowered, but the authors’ premise that the main aim of head injury trials should be to detect changes of “a few percentage points” in the rate of death or disability does not apply, for example, to phase I/II trials in the acute stage or the later interventions used in many of their reviewed trials. The authors might find it useful to reread the article “Why do we need some large, simple randomized trials?” by Yusuf et al (note the word “some” in the title).1

Several factors influence the relevant effect size and hence the size of the trial. Some potentially powerful interventions in severe head injury are not widely practicable and are likely to be expensive, and therefore evidence of a substantial effect is required if budget holders are to be persuaded to support them. The focus on a 10% benefit has reflected a perception that funding could be obtained for a treatment that benefits 1 person in 10. However, even this may be optimistic. Despite the 13% benefit obtained from nimodipine treatment in sub-
arachnoid haemorrhage,2 corresponding to a number needed to treat of eight, clinicians have had difficulties in gaining funding for the routine use of this drug. The effectiveness in individual patients is also relevant.

Dickinson and colleagues say that unfamiliarity among ethics committees and investigators with the idea of randomisation without consent obstructs recruitment. This is erroneous and displays a dangerously superficial attitude towards a complex area. What urgently needs to be clarified is the legal framework in which research in incompetent adults takes place. Recent legislation in the Scottish parliament contains no provision for an exception to the requirement to obtain informed consent. Equally it is not clear that any legal framework exists to allow research without consent in the rest of the United Kingdom.

The authors highlighted inadequate funding as one obstacle that has prevented large randomised controlled trials of widely practicable treatments for head injuries.1 The corresponding author is an applicant to the Medical Research Council for substantial funding for developing the CRASH study3 into a full scale trial, a study that is in part supported by the manufacturer of the agent under trial. In view of this, and his apparently strong position on this issue, it may be found surprising that no competing interests were declared.

Gordon D Murray
professor of medical statistics
Department of Community Health Sciences, Epidemiology and Statistics, University of Edinburgh, Edinburgh EH9 9AG
Gordon.Murray@ed.ac.uk

Graham M Teasdale
professor of neurosurgery
University Department of Neurosurgery, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF

Competing interests: As director of a charitable organisation, the European Brain Injury Consor-
tium, Professor Murray has been active in providing statistical advice to several pharmaceutical compa-
nies on the design, conduct, and analysis of clinical trials in head injury—namely, Bayer, Cambridge
Neuroscience, Novartis, Pharmos, SmithKline Bee-
cham, and Synthelabo. In addition to extensive
declared interests in head injury (BMJ 2000;250:1631-5), Professor Teasdale was a co-applicant to the Medical Research Council and a member of the steering committee for the pilot phase of the CRASH study but is not an applicant for funding for the full phase and has withdrawn from the steering committee.

13 Mar.

Authors’ reply

Editor—We are pleased that Murray and Teasdale agree that clinical trials in head injury have been too small and that some large simple randomised controlled trials are needed. To date, there have been no such studies in head injury. We are grateful to Professors Murray and Teasdale for identifying yet another obstacle to conducting large trials in head injury, the idea that to obtain funding a treatment must benefit at least 1 person in 10. There is no rational basis for the use of such a decision rule. Many factors impact on the decision to provide a treatment but considerations of efficiency require that priority is given to treatments that offer the greatest benefit per unit of cost. Even expensive treatments that benefit fewer than 1 person in 10 might be worth funding if the intervention offers an overall net welfare gain. In head injury, with high rates of long term disability, such a situation might easily occur.

When the effect size is large even small trials may be able to detect it. However, Murray and Teasdale fail to appreciate that both the size and the precision of the estimated treatment effect must be taken into account in therapeutic decision making. Large trials, with larger numbers of outcome events, provide more precise estimates of treatment effect, and the true treatment effect is likely to be close to what has been observed. Imprecise estimates of even large treatment effects from poor quality trials make clinical and funding decisions difficult.

We agree that the legal framework in which research in incompetent adults takes place needs to be clarified. Given that such senior investigators as Murray and Teasdale are unclear on this issue, we hope that we might be forgiven for suggesting that less experienced investigators also find this issue problematic.

In our paper we openly and publicly make the scientific argument for some large simple randomised trials in head injury. We openly and publicly acknowledge that the same scientific argument underpins the Medical Research Council’s CRASH trial (corticosteroid randomisation after significa-
tive head injury), the first large simple randomised controlled trial in head injury. Open scientific argument in the pages of a medical journal does not constitute a conflict of interest and we are surprised that Murray and Teasdale think otherwise.

Finally, we would point out that the CRASH trial is sponsored by the Medical Research Council and not the manu-
facturers of the agent under trial. The manufacturers have donated the drug for the trial to the Medical Research Council, but the design, management, and finance of the trial are entirely independent of them.

Ian Roberts
senior lecturer in epidemiology
Ian.Roberts@ichu.lanc.ac.uk

Frances Bunn
review group coordinator, Cochrane Injuries Group

Reinhard Wenzt
information specialist, Cochrane Injuries Group
Phil Edwards
research fellow
Child Health Monitoring Unit, Institute of Child Health, University College London, London WC1N 1EH

Competing interests: None declared.

If in doubt, declare competing interests

Editor—Five years ago it was unusual for contributors to medical journals to declare competing interests even though they often had them. Now, increasingly, contributors do declare them, but there continues to be con-
fusion over when to declare.

The BMJ started its campaign on compet-
ing interests by asking authors to declare any sort of competing interest, be it personal, political, religious, or whatever. Now we concentrate on financial competing interests because they are easier to define and there is stronger evidence that they matter.

Dr Roberts and others chose not to declare that they had applied to the Medical
Research Council for a grant for a large trial of the treatment of head injury. The BRMs guidance to contributors says: “A competing interest exists when professional judgment concerning a primary interest (such as patients’ welfare or the validity of research) may be influenced by a secondary interest (such as financial gain or personal rivalry).”

It seems entirely plausible that the view of Dr Roberts and others on the desirability of a large trial of treatment of head injury may be influenced by the Medical Research Council’s being more likely to award them a grant if that view becomes widely accepted. In my judgment, they would thus have been wiser to declare their competing interest.

There is nothing wrong with having competing interests, and my advice to contributors is: “If in doubt, declare.”

Richard Smith editor, BMJ

Use of steroids for acute spinal cord injury must be reassessed

Error—Yates and Roberts’s editorial on corticosteroids in head injury caused me considerable concern in so far as it portrayed the situation for treating acute spinal cord injury. Intravenous high dose methylprednisolone given within eight hours of injury has been promoted since the second American national acute spinal cord injury study. The positive benefit of this is based on conclusions derived from a selected post hoc subgroup analysis in one clinical trial. Current recommendations regarding evidence of clinical efficacy consistently advise caution in applying results from such non-randomised groups of patients.

The evidence produced by a systematic review that colleagues and I recently carried out does not support the use of high dose methylprednisolone in acute spinal cord injury to improve neurological recovery. We also concluded that “a deleterious effect on early mortality and morbidity cannot be excluded by this evidence.” In terms of experimental acute spinal cord injury, the functional neurological results extracted from non-rodent animal studies using high doses of either methylprednisolone or dexamethasone “constituted a body of evidence which cannot endorse a beneficial effect.” A trend to increased mortality in cat models of high spinal cord lesions was of concern. On the basis of information available to them, clinicians in Canada and the United States also consider it inappropriate to advise treatment with methylprednisolone in this context.

An independent assessment of the evidence available, particularly information from the American national acute spinal cord injury studies, is long overdue.

Deborah Short consultant in spinal cord injuries and rehabilitation medicine

Midlands Centre for Spinal Injuries, Robert Jones and Agnes Hunt Orthopaedic and District Hospital NHS Trust, Oswestry SY10 7AG debbie.short@rjahoh-tr.wmids.nhs.uk

Out of hours demand is higher in Wales than in England and Scotland

Error—Contact rates for out of hours services are greater in Wales than in England and Scotland. Statistics gathered by two south Wales cooperatives based in Gwent and Neath Port Talbot show that the workload is considerably higher than that indicated by Salisbury et al.

The Gwent cooperative covers a population of 116 040 patients and 56 doctors and the Neath cooperative 95 000 patients and 52 doctors. The number of patient contacts/1000 patients/year in 1999 was 204 in Gwent and 346.5 in Neath. This compares with the reported rates for those English and Scottish cooperatives that included bank holiday cover (both Welsh organisations provide this) of 145 and 221. The table compares the figures for the Gwent and Neath cooperatives with those for England and Scotland given by Salisbury et al. Although statistics have been collected in different ways, reasonably accurate comparisons can be made.

The Neath area does not attract high deprivation payments; my practice of 6150 patients, which is typical of the area, receives band 1 deprivation payments for 248 patients and band 2 deprivation payments for 132 patients. The Neath cooperative is 19 years old and moved into a dedicated treatment centre in 1996. Figures indicate that demand has reached a plateau, the number of calls having been between 32 000 and 33 000 for the past three years. Considerable seasonal variation occurs, with a much higher demand in December and January. Figures for December 1999 and January 2000 were 4206 and 3735 respectively.

Details of patient contacts with two cooperatives in Wales, 1999, compared with figures given in study done in England and Scotland (statistics have been collected in slightly different ways). Figures for England and Scotland are numbers (percentages); those for Gwent and Neath are percentages alone.

<table>
<thead>
<tr>
<th></th>
<th>England/Scotland</th>
<th>Gwent</th>
<th>Neath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total No of patient contacts</td>
<td>499 657</td>
<td>23 729</td>
<td>33 087</td>
</tr>
<tr>
<td>Given advice</td>
<td>409 407 (41.0)</td>
<td></td>
<td>41 630</td>
</tr>
<tr>
<td>Given home visit</td>
<td>313 550 (23.8)</td>
<td>28 205</td>
<td>16.7</td>
</tr>
<tr>
<td>Asked to visit centre</td>
<td>267 663 (29.8)</td>
<td>19.3</td>
<td>40.1</td>
</tr>
<tr>
<td>Admitted</td>
<td>30 743/554 179 (5.5)</td>
<td>8.9</td>
<td>9.1</td>
</tr>
</tbody>
</table>

The Gwent cooperative covers a population of 116 040 patients and 56 doctors and the Neath cooperative covers a population of 95 000 patients and 52 doctors. The number of patient contacts/1000 patients/year in 1999 was 204 in Gwent and 346.5 in Neath. This compares with the reported rates for those English and Scottish cooperatives that included bank holiday cover (both Welsh organisations provide this) of 145 and 221. The table compares the figures for the Gwent and Neath cooperatives with those for England and Scotland given by Salisbury et al. Although statistics have been collected in different ways, reasonably accurate comparisons can be made.

The Neath area does not attract high deprivation payments; my practice of 6150 patients, which is typical of the area, receives band 1 deprivation payments for 248 patients and band 2 deprivation payments for 132 patients. The Neath cooperative is 19 years old and moved into a dedicated treatment centre in 1996. Figures indicate that demand has reached a plateau, the number of calls having been between 32 000 and 33 000 for the past three years. Considerable seasonal variation occurs, with a much higher demand in December and January. Figures for December 1999 and January 2000 were 4206 and 3735 respectively.

Details of patient contacts with two cooperatives in Wales, 1999, compared with figures given in study done in England and Scotland (statistics have been collected in slightly different ways). Figures for England and Scotland are numbers (percentages); those for Gwent and Neath are percentages alone.

<table>
<thead>
<tr>
<th></th>
<th>England/Scotland</th>
<th>Gwent</th>
<th>Neath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total No of patient contacts</td>
<td>499 657</td>
<td>23 729</td>
<td>33 087</td>
</tr>
<tr>
<td>Given advice</td>
<td>409 407 (41.0)</td>
<td></td>
<td>41 630</td>
</tr>
<tr>
<td>Given home visit</td>
<td>313 550 (23.8)</td>
<td>28 205</td>
<td>16.7</td>
</tr>
<tr>
<td>Asked to visit centre</td>
<td>267 663 (29.8)</td>
<td>19.3</td>
<td>40.1</td>
</tr>
<tr>
<td>Admitted</td>
<td>30 743/554 179 (5.5)</td>
<td>8.9</td>
<td>9.1</td>
</tr>
</tbody>
</table>

1 Salisbury C, Trivella M, Broster S. Demand for and supply of out of hours care from general practitioners in England and Scotland: observational study based on routinely collected data. BMJ 2000;320:618-21. (4 March.)
then differences are more likely to occur in
the size of any effects than in their direction.
When interpreted in this light it is clear that
the present results provide quite firm
support for the conclusions of the better
designed individual trials that anthelmintic
treatment may indeed significantly improve
child growth and cognitive function; this is in
direct contrast to the authors’ own
pessimistic conclusion. Thus rather than
undermining the global helminth control
initiatives promoted by the World Bank and
World Health Organization, the present
review has actually produced evidence in
their support.

E Michael senior research fellow Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, Oxford OX1 3FY edwin.michael@ceid.ox.ac.uk

Conclusions should have been based on broader considerations

Entorr—In their systematic review on the effects of treatment for intestinal helminth infections on growth and cognitive performance in children, Dickson et al note numerous shortcomings in the design of previous studies. The authors themselves, however, conclude misleadingly that develop-
ing countries should not invest in mass treatment of children against helminth infections.

Firstly, no studies have apparently been
designed to disentangle the effects of helminth infections on cognitive function from the effects of other sicknesses. Using a dynamic multivariate random effects frame-
work on growth and cognitive performance in children: systematic review of randomised trials BMJ 2000;320:
1097-1701. (24 June.)

1097-1701. (24 June.)

4 Bhargava A. Modelling the effects of maternal nutritional status and socioeconomic variables on the anthropometric and psychological indicators of Kenyan infants from age 0-6 months. Ann J Phys Anthropol 2000;111:89-104.

Studies of short term treatment cannot assess long term benefits of regular treatment

When the World Health Organization, Unicef, Unesco, and the World Bank included deworming as one component of their efforts to focus resources on effective school health (the “FRESH start” partnership) they intended that infrequent but regular treatment from an early age would ensure that children avoided heavy infection throughout the vulnerable years of growth and development. A review of trials that have not evaluated such a strategy is not an appropriate basis for policy recommend-
ations, especially since the review omitted, for example, the benefits of avoiding hookworm anaemia and Trichuris colitis.

The remarkable cost effectiveness of deworming derives not from some easily measured and immediate clinical benefit of a single intervention but from the longer term preventive value of an annual investment of less than 7p.

Don Bundy knowledge coordinator Human Development Network, World Bank, Washington, DC, USA dbundy@worldbank.org

Richard Peto professor Clinical Trial Service Unit, University of Oxford, Oxford OX3 9DU

1097-1701. (24 June.)

Message does not follow from systematic review’s findings

Entorr—The number of parasites per host in persistent parasitic infections such as the helminthiases is characteristically dispersed in a frequency distribution that is extremely skewed compared with Gaussian or even Poisson distributions. From this follow a couple of points that are relevant to a meta-
analysis such as that by Dickson et al.

Firstly, heterogeneity in parasite burdens is of special importance, exceeding that of age and drug type, which the authors had hoped to take into account but could not do from the primary trials. Secondly, attempt-
ning to allow for this heterogeneity by gener-
ating a random effects model may be inap-
propriate since this is done by intro-
ducing an error term with an assumption of
Gaussian distribution of the error.

More generally—and this point is also related to the extremely skewed and over-
dispersed worm distributions—achieving end points of growth and cognitive develop-
ment in trials of the treatment of popula-
tions, even where the prevalence of infec-
tions is high, needs thinking about. The difference between having no worms and having a few worms is probably much less clinically important than the difference between having some worms and having an enormous burden of worms (having an enormous burden is always relatively rare).

This is like the difference between carriage of Neisseria meningitidis (high percentage of the population) and invasive meningococcal disease (a few thousand cases a year in the British Isles). Currently in the United Kingdom we are vaccinating about 15 million people to prevent 1500 cases of type C meningococcal disease and 150 deaths a year. But we shall not be assess-
ing our effectiveness by changes in the total morbidity or mortality of the 15 million population, which would be lost in the dilu-
tion, or by any measure such as numbers needed to vaccinate to prevent a case of meningococcal disease: we will count the individuals with type C meningococcal disease.

In a similar way the greatest effect of anthelmintic treatment on growth and development of children will be concen-
trated in those with the heaviest parasite burdens. This effect occurred in one of the trials reviewed and was considerable when only intense, severely symptomatic
trichuriasis was treated, in a study where placebo control would have been unethical. The systematic review is useful, but the message in the “What this study adds” panel that “There is little evidence to support the use of routine anthelmintic treatment to improve growth and cognitive performance in children in developing countries” does not follow from its findings.

Ed Cooper consultant paediatrician
Newham General Hospital, London E13 8SL
edcooper@compusearch.com

Dr Cooper is an author of one of the trials reviewed.

2 Dickson R, Asaahit S, Williamson P, Demellweek C, Garner P. Effects of treatment for intestinal helminth infec-

Review needed to take account of all relevant evidence, not only effects on growth and cognitive performance

Enrior—Dickson et al’s paper reflects the public health importance of helminth infections, particularly in children, adoles-
cent girls, and women of childbearing age.¹ We are concerned, however, that on the basis of limited evidence the reviewers “would be unwilling to recommend that countries or regions invest in programmes that routinely treat children with anthelmintic drugs.” As the authors state in their introduction, the World Health Organization, Unicef, the World Bank, and the World Food Programme together with partners and collaborators have strongly recommended such interventions, having regard to a substantial body of supportive evidence, for the past 25 years. The impact of population based chemo-
therapy depends on many factors. Local patterns of mixed nematode infections transmitted in soil, and their clinical conse-
quences, show important variations. Whereas hookworm may be associated primarily with iron deficiency anemia, Ascaris lumbricoides may be associated mainly with stunting of growth. Intensity of transmission, nutritional intake, and retreatment schedules are among other variables of fundamental importance. Assessing the impact of regular anthelmintic chemo-
therapy must be related to these multiple effects. Only then can proper policy implica-
tions and recommendations be given to countries or regions.

To support their conclusion the review-
ers needed to take account of all relevant evidence, not only the effects on growth and cognitive performance. They seem to have failed in this crucial requirement. For

instance, whereas they refer to the work of Stoltzus et al,² they exclude reference to the main finding that, in an area where hookworm infection predominated, “this deworming program prevented 1260 cases of moderate-to-severe anemia and 276 cases of severe anemia in a population of 30 000 schoolchildren in 1 year.”³

Finally, two of the authors of this letter (LA and MA) are cited in the paper as being members of the advisory panel to authors. Including their names may give the impression that they agreed with the content of the paper; in fact, they were not consulted before publication.

Lorenzo Savioi coordinator, strategy development and monitoring for parasitic diseases and vector control saviol@who.int

Maria Neira director
Control, Prevention and Eradication, World Health Organization, 1211 Geneva 27, Switzerland

Marco Albonico scientific coordinator
Ivo de Carneri Foundation, 10122 Torino, Italy

Michael J Beach epidemiologist
Epidemiology Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341-3724, USA

Hababu Mohammed Chwaya director
Ivo de Carneri Public Health Laboratory, PO Box 3773, Chake-Chake, Pemba Island, Zanzibar, United Republic of Tanzania

David W T Crompton head
World Health Organization Collaborating Centre for Soil-transmitted Helminthiases, University of Glasgow, Institute of Biomedical and Life Sciences, Glasgow G12 9SQ

John Dunne former director
Division of Drug Management and Policies, World Health Organization, 1211 Geneva 27, Switzerland

John P Ehrenberg regional advisor on communicable diseases
Pan American Health Organization, 525, 23rd Street, N, W, Washington, DC, 20037, USA

Theresa Gyorkos associate director
McGill University, Division of Clinical Epidemiology, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada

Jane Kwaslig director
Child Development Programme, University of Natal, Durban 4041, Natal, South Africa

Martin G Taylor professor of medical helminthology
Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT

Carlo Urbani public health specialist vector-borne and other parasitic diseases
WHO Representative’s Office, PO Box 52, Hanoi, Vietnam 1000

Feng Zheng director
Institute of Parasitic Diseases, Chinese Academy of Preventive Medicine, 207 Rui Jin Er Lu, Shanghai 200025, People’s Republic of China

Authors’ reply
Enrior—Michael points out that the weight changes favour the intervention. But the differences in weight gain between the groups are often small. Michael is incorrect in saying that the evidence presented provides firm support that anthelmintic treatment significantly improves cognitive function. It is certainly not the case, as he implies, that treated children invariably do better in cognitive and academic tests than control children. Control children taking placebo have shown greater gains in some tests than treated children, and in some cases this difference has been significant. On this topic, Bhargava seems to imply that the failure to find an effect may be due to the unreliability of the tests. But most tests used have had adequate to good reliability.

Bundy and Peto comment that our review does not evaluate infrequent but regular treatment from an early age. We sought trials that repeated treatments, and this was defined in our protocol. But there were few such trials, and the data were limited. The current large cluster random-
ised trial in Lucknow will help provide some answers to the effectiveness of these strategies.

Cooper notes that the random effects estimate may be inaccurate because of the skewed dispersion of worms in a population. His argument suggests that the uncertainty around effect estimates is increased. In our protocol we sought to conduct subgroup analyses by intensity of worm burden, but no trials provided the data necessary for us to do this.

The letter from the World Health Organization with 13 authors states that they disagree with how we interpreted the data, but again they do not provide substan-
tive evidence to support their past and current recommendations. Savioi and Albonico provided helpful input to the pro-
tocol development for this review. We did not intend to imply that they had agreed with the results of the review, only to acknowledge their valuable input in the review process; we will make this explicit in the Cochran review.

Several authors comment on the fact that the review was not able to draw conclu-
sions about the effects of long term treatments. We were unable to find any ran-
donised controlled trials that evaluated long term benefit, and the evidence of short term benefit was not, for us, convincing. We therefore stand by our conclusion that it was premature to recommend this widely, and for countries to borrow money from the World Bank to routinely implement national population based policies of routine repeated treatment. We believe that the introductory statement to a World Health Organization publication—that “regular chemotherapy of infected populations reduces mortality and morbidity in pre-
school children, improves nutritional status and school performance of school children”—is not based on current available evidence.¹

1 Dickson R, Asaahit S, Williamson P, Demellweek C, Garner P. Effects of treatment for intestinal helminth infec-
Routine treatment with anthelmintics could well be an exciting and important intervention. But we need the results of larger, well-designed trials, such as the current trial in India, before lending money to already poor countries to invest in an intervention where there are doubts about its wholesale benefit.

Paul Garner
Senior Lecturer
Liverpool School of Tropical Medicine, Liverpool L3 5QA

Rumon Dickinson
Lecturer, School of Health Sciences
rdickson@liv.ac.uk

Colin Demellweek
Lecturer, Department of Clinical Psychology
Paula Williamson
Lecturer, Department of Mathematical Sciences
University of Liverpool, Liverpool L69 3GB

Shally Awasthi
Associate Professor of Paediatrics
King George Medical College, Lucknow, India

Adjuvant irradiation for breast cancer

Treatment plans need to be made with better anatomical information

Editor—Kunkler’s editorial on adjuvant irradiation for breast cancer addressed an important problem. More and more patients of all age groups with potentially highly curable disease are being treated with both adjuvant chemotherapy and radiation. It is therefore most important that the treatment should be given in the safest possible manner while maintaining its therapeutic advantage. Increasingly, people recognise that radiotherapy can improve survival in breast cancer, and practitioners are becoming aware not just of the cardiac morbidity that occurs but also of the cardiac mortality.

To investigate the magnitude of these problems we have undertaken a series of magnetic resonance scans on patients before radiotherapy planning and treatment. The advent of magnetic resonance imaging has allowed us to quantify the accuracy with which radiotherapy treatments are being delivered in breast cancer. The architecture of our magnetic resonance scanner is open and allows patients to be scanned in the treatment position. Magnetic resonance images have the advantage over other imaging techniques in that they clearly show tumour, tumour bed, and lymph nodes. Because of the limited resource, patients were chosen if they were to have radiotherapy on the left side or if they were to have extensive radiotherapy, including of the nodes, to the right side. We have now scanned 600 patients; preliminary analysis on the first 200 clearly shows that, in at least 30% of cases, conventionally planned treatment would have been suboptimal. As far as the heart is concerned, more than 80% of the left sided treatments would have irradiated a considerable fraction of cardiac tissue, quite often in the territory of the left anterior descending coronary artery. A finding of potentially greater importance was that the tumour bed was frequently missed. In the first 200 patients more than 30% would have had complete or partial treatment failure. In over 90% of the patients requiring adjacent nodal irradiation the entire cervicoaxillary chain below the clavicle failed to be encompassed.

Despite the lack of precision of conventional treatment planning that we have shown, radiotherapy does improve survival. It is therefore reasonable to expect that if future treatment plans were made with the benefit of adequate anatomical information, its efficacy would be greatly enhanced. In addition, cardiac morbidity and mortality would be reduced.

Elizabeth Whipp
Consultant Clinical Oncologist
liz.whipp@uhbt.swinflections.nhs.uk

Charles Candlish
Specialist Grade Registrar
Bristol Oncology Centre, Bristol BS2 8ED

We thank the Friends of the Bristol Oncology Centre for providing the open magnetic resonance scanner and the medical physics department for facilitating distortion correction and incorporating the scans into the planning system.

Author’s reply

Editor—Whipp and Candlish provide pertinent data on the extent of cardiac irradiation in patients with left sided tumours or undergoing extensive adjuvant locoregional radiotherapy. Their observations strongly support the case for more sophisticated imaging during the planning of breast radiotherapy than is available in most centres in the United Kingdom. As they point out, accuracy in treatment delivery is important; two large randomised trials showed a 9-10% survival advantage from the addition of locoregional radiotherapy to systemic treatment in high risk women.

The recent update of the Oxford overview of randomised trials of breast radiotherapy identified an increase in risk of death from vascular causes (death rate ratio 1.30 (SE 0.09)). The overview does not provide any subgroup analysis of vascular causes of death (for example, heart or great vessels) by volume of irradiation of these structures or laterality of tumour. An analysis of vascular mortality by laterality is planned in the next overview. Much less information is available on cardiac morbidity; this is not included in the overview.

Long term follow up of patients included in the Danish Breast Cooperative Group’s trials of postmastectomy irradiation in high risk women receiving adjuvant systemic treatment suggests that there is no difference in cardiac morbidity or mortality between irradiated and non-irradiated groups. In these trials, electrons with limited penetration beyond the chest wall would have minimised dosage to the heart and great vessels.

Most centres in the United Kingdom, however, use a different treatment technique from that adopted in the Danish trials. Using electronic portal imaging of patients during adjuvant irradiation with tangential megavoltage beams for left sided breast tumours, Magee et al in Manchester showed that the cardiac apex was irradiated in 9% of cases. Cardiac morbidity and mortality therefore need to be assessed in long term prospective studies of adjuvant locoregional irradiation.

At present, open magnetic resonance facilities are not available in most departments. Currently, wide aperture (90 cm) computed tomography simulators, adequate to accommodate patients in the treatment position adopted in many radiotherapy departments, are not commercially available.

An urgent dialogue is needed between clinical oncologists to decide whether, to minimise cardiac exposure, computed tomography should be adopted for all women undergoing irradiation for left sided tumours. Until long term data on cardiac morbidity and mortality and mortality from prospective studies are available the avoidance of unnecessary cardiac irradiation seems a sensible approach.

The development of computed tomography simulators with wider apertures than are currently available is an important priority.

Ian Kunkler
Consultant Clinical Oncologist
Department of Clinical Oncology, Western General Hospital, Lothian University Hospitals NHS Trust, Edinburgh EH4 2XU

Comparing survival rates between different registries can be difficult

Editor—The paper by Stotter et al is an important reminder of the need for caution when comparing incidence and survival rates between different populations. At the Thames Cancer Registry we have developed a method of estimating completeness of ascertainment as a function of time since diagnosis. As part of this procedure, Kaplan-Meier estimates of survival are calculated, and we have included cases registered solely on the basis of information from their death certificates, assuming that their
survival will be the same as that of cases in whom the initial registration was made from the death certificate but subsequent tracing of records has led to further information and a “proper” date of diagnosis.

Using data on all registered cancer cases with a date of diagnosis (or date of death for those cases registered on the basis of death certificates only) in 1992, and calculating survival with and without inclusion of these cases by the above method, gives an estimate of five year survival rate of 37% when the cases registered on the basis of their death certificate only are omitted and 30% when they are included (figure). This is in line with the findings of Berrino et al, who showed that the percentage reduction in estimated survival resulting from the inclusion of such cases is generally of the same order as the proportion of such cases in the sample. The rate of cases registered on the basis of their death certificate only in the Thames Cancer Registry in 1992 was 19%.

A large rate of cases in whom the initial registration was made from the death certificate but additional information used to gain further information and the date of diagnosis—which implies that many cases become known to the registry only when they die—tends to bias survival estimates downwards, as it leads to less complete registration in young patients and those with cancers associated with good long term survival. This effect can be seen when comparing completeness estimates in patients with lung cancer (94% complete two years after diagnosis) and melanoma (64%).

It is important to know the rates of types of registrations when comparing survival rates between different registries.

David Robinson consultant statistician dave.robinson@kcl.ac.uk
Janine Bell senior researcher
Heinrich Müller director of research
Thames Cancer Registry, King’s College London SE1 3QD

Support for studies in paediatric medicine is needed

Error—The paper by Aynsley-Green et al highlighted the apparent lack of political clout among those delivering medical services for children. We have experienced the effect of this in our efforts to pilot the use of morphine-6-glucuronide as a sedative in newborn babies who were given artificial ventilation.

We wish to highlight the difficulties we had in researching this drug, to give a better understanding of why 90% of babies in neonatal units continue to receive unlicensed or off-label drugs.

Opiates are used frequently in neonatal medicine, and morphine is the most widely used. Studies have examined their metabolism and pharmacokinetics, but the knowledge about pharmacodynamics is limited.

Royal Medical Benevolent Fund’s Christmas appeal

Error—The Christmas season is almost upon us and everyone, regardless of race or creed, looks forward to one of the happiest times of the year—but for some this is not so. Those of us connected with the Royal Medical Benevolent Fund know very well the sadness that follows unexpected tragedy within our profession. The hardship that may follow seems magnified at this time of year and is all the more poignant when young children are affected.

The generosity of BMJ readers last Christmas helped the fund to distribute an additional £75 000 to doctors less fortunate than themselves, particularly their bereaved families. Each year general grants from the fund total well over £800 000.

The fund always seeks to give extra help at Christmas with gifts for the children concerned. May I therefore ask for your support again this Christmas?

The Royal Medical Benevolent Fund is very much your fund, which is why I am taking this opportunity to write to all doctors. I hope that this Christmas you will decide to contribute to our appeal. Our ability to help depends on your generosity. I thank those who are already members and all the other doctors who have helped during the year, and I particularly thank those who support us for the first time this Christmas.

Contributions marked Christmas appeal may be sent to the chief executive officer of the fund at this address or to the treasurer of your local guild of the fund. Thank you.

Rodney Sweetnam president
Royal Medical Benevolent Fund, 24 King’s Road, London SW19 8QN

Rapid responses

Correspondence submitted electronically is available on our website