Data from: Presynaptic GABAB receptors functionally uncouple somatostatin interneurons from the active hippocampal network

  • Sam Booker (Creator)
  • Harumi Harada (Creator)
  • Claudio Elguate (Creator)
  • Julia Bank (Creator)
  • Bartos Marlene (Creator)
  • Akos Kulik (Creator)
  • Imre Vida (Creator)

Dataset

Description

Information processing in cortical neuronal networks relies on properly balanced excitatory and inhibitory neurotransmission. A ubiquitous motif for maintaining this balance is the somatostatin interneuron (SOM-IN) feedback microcircuit. Here, we investigate the modulation of this microcircuit by presynaptic GABAB receptors (GABABRs) in the rat hippocampus. Whole-cell recordings from SOM-INs reveal that both excitatory and inhibitory synaptic inputs are strongly inhibited by GABABRs, while optogenetic activation of the interneurons shows that their inhibitory output is also strongly suppressed. Electron microscopic analysis of immunogold-labelled freeze-fracture replicas confirms that GABABRs are highly expressed presynaptically at both input and output synapses of SOM-INs. Activation of GABABRs selectively suppresses the recruitment of SOM-INs during gamma oscillations induced in vitro. Thus, axonal GABABRs are positioned to efficiently control the input and output synapses of SOM-INs and can functionally uncouple them from local network with implications for rhythmogenesis and the balance of entorhinal versus intrahippocampal afferents.

Data Citation

Booker, S.A. et al. Data from: Presynaptic GABAB receptors functionally uncouple somatostatin interneurons from the active hippocampal network, Dryad, Dataset, 10.5061/dryad.gt160v2
Date made available19 Feb 2019
PublisherDryad

Cite this