Listening test materials for "Multiple Feed-forward Deep Neural Networks for Statistical Parametric Speech Synthesis"

Dataset

Abstract

In the paper which this data accompanies, we investigate a combination of several feed-forward deep neural networks (DNNs) for a high-quality statistical parametric speech synthesis system. Recently, DNNs have significantly improved the performance of essential components in the statistical parametric speech synthesis, e.g. spectral feature extraction, acoustic modelling and spectral post-filter. In this paper our proposed technique combines these feed-forward DNNs so that the DNNs can perform all standard steps of the statistical speech synthesis from end to end, including the feature extraction from STRAIGHT spectral amplitudes, acoustic modelling, smooth trajectory generation and spectral post-filter. The proposed DNN-based speech synthesis system is then compared to the state-of-the-art speech synthesis systems, i.e. conventional HMM-based, DNN-based and unit selection ones.

Data Citation

Yamagishi, Junichi. (2015). Listening test materials for "Multiple Feed-forward Deep Neural Networks for Statistical Parametric Speech Synthesis", [dataset]. The Centre for Speech Technology Research (CSTR). http://dx.doi.org/10.7488/ds/282.
Date made available8 Jul 2015
PublisherEdinburgh DataShare

Cite this