Matlab codes for "Improved Multiscale Permutation Entropy for Biomedical Signal Analysis: Interpretation and Application to Electroencephalogram Recordings"

Dataset

Abstract

Permutation entropy (PE) is a well-known and fast method extensively used in many physiological signal processing applications to measure the irregularity of time series. Multiscale PE (MPE) is based on assessing the PE for a number of coarse-grained sequences representing temporal scales. However, the stability of the conventional MPE may be compromised for short time series. Here, we propose an improved MPE (IMPE) to reduce the variability of entropy measures over long temporal scales, leading to more reliable and stable results. We gain insight into the dependency of MPE and IMPE on several straightforward signal processing concepts which appear in biomedical activity via a set of synthetic signals. We also apply these techniques to real biomedical signals via publicly available electroencephalogram (EEG) recordings acquired with eyes open and closed and to ictal and non-ictal intracranial EEGs. We conclude that IMPE improves the reliability of the entropy estimations in comparison with the traditional MPE and that it is a promising technique to characterize physiological changes affecting several temporal scales. We provide the codes of the synthetic signals and IMPE in the public domain.

Data Citation

Hamed Azami, Javier Escudero, Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings, Biomedical Signal Processing and Control, Volume 23, January 2016, Pages 28-41, ISSN 1746-8094, http://dx.doi.org/10.1016/j.bspc.2015.08.004. (http://www.sciencedirect.com/science/article/pii/S174680941500138X)
Date made available26 Jul 2015
PublisherEdinburgh DataShare
Date of data production2015

Cite this