Reliability Ensemble Averaging of ISIMIP NPP projections for 2095-2099 under RCP8.5



This dataset includes a netCDF file that stores the output of Reliability Ensemble Averaging applied to ISIMIP projections of NPP for 2095-2099 under RCP8.5 using CARDAMOM, FLUXCOM and MODIS as benchmarks for modern NPP. Corresponding analyses have been reported in the following journal article: Exbrayat, J.-F., Bloom, A. A., Falloon, P., Ito, A., Smallman, T. L., and Williams, M.: Reliability Ensemble Averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties, Earth Syst. Dynam. Discuss.,, accepted, 2018.


Multi-model averaging techniques provide opportunities to extract additional information from large ensembles of simulations. In particular, present-day model skill can be used to evaluate their potential performance in future climate simulations. Multi-model averaging methods have been used extensively in climate and hydrological sciences, but they have not been used to constrain projected plant productivity responses to climate change, which is a major uncertainty in earth system modelling. Here, we use three global observation-orientated estimates of current net primary productivity (NPP) to perform a reliability ensemble averaging (REA) using 30 global simulations of the 21st century change in NPP based on the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) ‘business as usual’ emissions scenario. We find that the three REAs support an increase in global NPP by the end of the 21st century (2095-2099) compared to 2001-2005, which is 2 – 3% stronger than the ensemble ISIMIP mean value of 24.2 Pg C y-1. Using REA also leads to a 45 – 68% reduction in the global uncertainty of 21st century NPP projection, which strengthens confidence in the resilience of the CO2 fertilization effect to climate change. This reduction in uncertainty is especially clear for boreal ecosystems although it may be an artefact due to the lack of representation of nutrient limitations on NPP in most models. Conversely, the large uncertainty that remains on the sign of the response of NPP in semi-arid regions points to the need for better observations and model development in these regions.

Data Citation

Exbrayat, Jean-François; Williams, Mathew. (2018). Reliability Ensemble Averaging of ISIMIP NPP projections for 2095-2099 under RCP8.5, [dataset]. School of GeoSciences. University of Edinburgh.
Date made available14 Feb 2018
PublisherEdinburgh DataShare
Geographical coverageGlobal

Cite this