Supporting data for: "The properties of human disease mutations at protein interfaces"

  • Ben Livesey (Creator)



The assembly of proteins into complexes and interactions with other biomolecules are often vital for their biological function. While it is known that mutations at protein interfaces have a high potential to be damaging and cause human genetic disease, there has been relatively little consideration for how this varies between different types of interfaces. Here we investigate the properties of human pathogenic and putatively benign missense variants at homomeric (isologous and heterologous), heteromeric, DNA, RNA and other ligand interfaces, and at different regions with respect to those interfaces. We find that different types of interfaces vary greatly in their propensity to be associated with pathogenic mutations, with homomeric heterologous and DNA interfaces being particularly enriched in disease. We also find that residues that do not directly participate in an interface, but are close in 3D space, also show a significant disease enrichment. Finally, we show that mutations at different types of interfaces tend to have distinct property changes when undergoing amino acid substitutions associated with disease, and that this is linked to substantial variability in their identification by computational variant effect predictors.

Data Citation

Livesey, Benjamin. (2021). Supporting data for: "The properties of human disease mutations at protein interfaces", [dataset]. University of Edinburgh. Edinburgh Medical School.
Date made available20 Aug 2021
PublisherEdinburgh DataShare

Cite this