TY - JOUR
T1 - 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer
AU - ProtecT Study Group
AU - Hamdy, Freddie C
AU - Donovan, Jenny L
AU - Lane, J Athene
AU - Mason, Malcolm
AU - Metcalfe, Chris
AU - Holding, Peter
AU - Davis, Michael
AU - Peters, Tim J
AU - Turner, Emma L
AU - Martin, Richard M
AU - Oxley, Jon
AU - Robinson, Mary
AU - Staffurth, John
AU - Walsh, Eleanor
AU - Bollina, Prasad
AU - Catto, James
AU - Doble, Andrew
AU - Doherty, Alan
AU - Gillatt, David
AU - Kockelbergh, Roger
AU - Kynaston, Howard
AU - Paul, Alan
AU - Powell, Philip
AU - Prescott, Stephen
AU - Rosario, Derek J
AU - Rowe, Edward
AU - Neal, David E
PY - 2016/10/13
Y1 - 2016/10/13
N2 - BACKGROUND: The comparative effectiveness of treatments for prostate cancer that is detected by prostate-specific antigen (PSA) testing remains uncertain.METHODS: We compared active monitoring, radical prostatectomy, and external-beam radiotherapy for the treatment of clinically localized prostate cancer. Between 1999 and 2009, a total of 82,429 men 50 to 69 years of age received a PSA test; 2664 received a diagnosis of localized prostate cancer, and 1643 agreed to undergo randomization to active monitoring (545 men), surgery (553), or radiotherapy (545). The primary outcome was prostate-cancer mortality at a median of 10 years of follow-up. Secondary outcomes included the rates of disease progression, metastases, and all-cause deaths.RESULTS: There were 17 prostate-cancer-specific deaths overall: 8 in the active-monitoring group (1.5 deaths per 1000 person-years; 95% confidence interval [CI], 0.7 to 3.0), 5 in the surgery group (0.9 per 1000 person-years; 95% CI, 0.4 to 2.2), and 4 in the radiotherapy group (0.7 per 1000 person-years; 95% CI, 0.3 to 2.0); the difference among the groups was not significant (P=0.48 for the overall comparison). In addition, no significant difference was seen among the groups in the number of deaths from any cause (169 deaths overall; P=0.87 for the comparison among the three groups). Metastases developed in more men in the active-monitoring group (33 men; 6.3 events per 1000 person-years; 95% CI, 4.5 to 8.8) than in the surgery group (13 men; 2.4 per 1000 person-years; 95% CI, 1.4 to 4.2) or the radiotherapy group (16 men; 3.0 per 1000 person-years; 95% CI, 1.9 to 4.9) (P=0.004 for the overall comparison). Higher rates of disease progression were seen in the active-monitoring group (112 men; 22.9 events per 1000 person-years; 95% CI, 19.0 to 27.5) than in the surgery group (46 men; 8.9 events per 1000 person-years; 95% CI, 6.7 to 11.9) or the radiotherapy group (46 men; 9.0 events per 1000 person-years; 95% CI, 6.7 to 12.0) (P<0.001 for the overall comparison).CONCLUSIONS: At a median of 10 years, prostate-cancer-specific mortality was low irrespective of the treatment assigned, with no significant difference among treatments. Surgery and radiotherapy were associated with lower incidences of disease progression and metastases than was active monitoring. (Funded by the National Institute for Health Research; ProtecT Current Controlled Trials number, ISRCTN20141297 ; ClinicalTrials.gov number, NCT02044172 .).
AB - BACKGROUND: The comparative effectiveness of treatments for prostate cancer that is detected by prostate-specific antigen (PSA) testing remains uncertain.METHODS: We compared active monitoring, radical prostatectomy, and external-beam radiotherapy for the treatment of clinically localized prostate cancer. Between 1999 and 2009, a total of 82,429 men 50 to 69 years of age received a PSA test; 2664 received a diagnosis of localized prostate cancer, and 1643 agreed to undergo randomization to active monitoring (545 men), surgery (553), or radiotherapy (545). The primary outcome was prostate-cancer mortality at a median of 10 years of follow-up. Secondary outcomes included the rates of disease progression, metastases, and all-cause deaths.RESULTS: There were 17 prostate-cancer-specific deaths overall: 8 in the active-monitoring group (1.5 deaths per 1000 person-years; 95% confidence interval [CI], 0.7 to 3.0), 5 in the surgery group (0.9 per 1000 person-years; 95% CI, 0.4 to 2.2), and 4 in the radiotherapy group (0.7 per 1000 person-years; 95% CI, 0.3 to 2.0); the difference among the groups was not significant (P=0.48 for the overall comparison). In addition, no significant difference was seen among the groups in the number of deaths from any cause (169 deaths overall; P=0.87 for the comparison among the three groups). Metastases developed in more men in the active-monitoring group (33 men; 6.3 events per 1000 person-years; 95% CI, 4.5 to 8.8) than in the surgery group (13 men; 2.4 per 1000 person-years; 95% CI, 1.4 to 4.2) or the radiotherapy group (16 men; 3.0 per 1000 person-years; 95% CI, 1.9 to 4.9) (P=0.004 for the overall comparison). Higher rates of disease progression were seen in the active-monitoring group (112 men; 22.9 events per 1000 person-years; 95% CI, 19.0 to 27.5) than in the surgery group (46 men; 8.9 events per 1000 person-years; 95% CI, 6.7 to 11.9) or the radiotherapy group (46 men; 9.0 events per 1000 person-years; 95% CI, 6.7 to 12.0) (P<0.001 for the overall comparison).CONCLUSIONS: At a median of 10 years, prostate-cancer-specific mortality was low irrespective of the treatment assigned, with no significant difference among treatments. Surgery and radiotherapy were associated with lower incidences of disease progression and metastases than was active monitoring. (Funded by the National Institute for Health Research; ProtecT Current Controlled Trials number, ISRCTN20141297 ; ClinicalTrials.gov number, NCT02044172 .).
KW - Age Factors
KW - Aged
KW - Comparative Effectiveness Research
KW - Disease Progression
KW - Follow-Up Studies
KW - Humans
KW - Kaplan-Meier Estimate
KW - Male
KW - Middle Aged
KW - Neoplasm Metastasis
KW - Outcome Assessment, Health Care
KW - Prostate-Specific Antigen/blood
KW - Prostatectomy
KW - Prostatic Neoplasms/mortality
KW - Watchful Waiting
U2 - 10.1056/NEJMoa1606220
DO - 10.1056/NEJMoa1606220
M3 - Article
C2 - 27626136
SN - 0028-4793
VL - 375
SP - 1415
EP - 1424
JO - New England Journal of Medicine
JF - New England Journal of Medicine
IS - 15
ER -