Abstract / Description of output
Oculocutaneous albinism (OCA) is a heritable disorder of pigment production that manifests as hypopigmentation and altered eye development. Exon sequencing of known OCA genes is unsuccessful in producing a complete molecular diagnosis for a significant number of affected individuals. We sequenced the DNA of individuals with OCA using short-read custom capture sequencing that targeted coding, intronic and non-coding regulatory regions of known OCA genes and GWAS-associated pigmentation loci. We identified an OCA2 complex structural variant (CxSV), defined by a 143kb inverted segment reintroduced in intron 1, upstream of the native location. The corresponding CxSV junctions were observed in 11/390 probands screened. The 143kb CxSV presents in one family as a copy number variant (CNV) duplication for the 143kb region. In the remaining 10/11 families, the 143kb CxSV acquired an additional 184kb deletion across the same region, restoring exons 3-19 of OCA2 to a copy-number neutral state. Allele-associated haplotype analysis found rare SNVs rs374519281 and rs139696407 are linked with the 143kb CxSV in both OCA2 alleles. For individuals in which customary molecular evaluation does not reveal a biallelic OCA diagnosis, we recommend preliminary screening for these haplotype-associated rare variants, followed by junction-specific validation for the OCA2 143kb CxSV. This article is protected by copyright. All rights reserved.
Original language | English |
---|---|
Journal | Human Mutation: Variation, Informatics and Disease |
Early online date | 10 Jul 2021 |
DOIs | |
Publication status | E-pub ahead of print - 10 Jul 2021 |