Abstract / Description of output
We present the determination of a set of parton distributions of the nucleon, at next-to-leading order, from a global set of deep-inelastic scattering data: NNPDF1.0. The determination is based on a Monte Carlo approach, with neural networks used as unbiased interpolants. This method, previously discussed by us and applied to a determination of the nonsinglet quark distribution, is designed to provide a faithful and statistically sound representation of the uncertainty on parton distributions. We discuss our dataset, its statistical features, and its Monte Carlo representation. We Summarize the technique used to solve the evolution equations and its benchmarking, and the method used to compute physical observables. We discuss the parametrization and fitting of neural networks, and the algorithm used to determine the optimal fit. We finally present our set of parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent parton sets. We use it to compute the benchmark W and Z cross sections at the LHC. We discuss issues of delivery and interfacing to commonly used packages such as LHAPDF. (C) 2008 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 163 |
Number of pages | 63 |
Journal | Nuclear physics b |
Volume | 809 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 1 Mar 2009 |
Keywords / Materials (for Non-textual outputs)
- DEEP-INELASTIC-SCATTERING
- CURRENT CROSS-SECTIONS
- FREE GAUGE-THEORIES
- DEUTERON STRUCTURE FUNCTIONS
- HIGH STATISTICS MEASUREMENT
- GLOBAL QCD ANALYSIS
- SCALING VIOLATIONS
- MUON SCATTERING
- LEADING ORDER
- 2ND-ORDER CONTRIBUTIONS