Abstract / Description of output
To better understand the role of natural dynamics in motor control, we have constructed a mathematical model of crawling mechanics in larval Drosophila.
The model accounts for key anatomical features such as a segmentally patterned, viscoelastic outer body wall (cuticle); a non-segmented inner cavity (haemocoel) filled with incompressible fluid that enables visceral pistoning; and claw-like protrusions (denticle bands) giving rise to asymmetric friction.
Under conditions of light damping and low forward kinetic friction, and with a single cuticle segment initially compressed, the passive dynamics of this model produce wave-like motion resembling that of real larvae. The presence of a volume-conserving hydrostatic skeleton allows a wave reaching the anterior of the body to initiate a new wave at the posterior, thus recycling energy. Forcing our model with a sinusoidal input reveals conditions under which power transfer from control to body may be maximised. A minimal control scheme using segmentally localised positive feedback is able to exploit these conditions in order to maintain wave-like motion indefinitely. These principles could form the basis of a design for a novel, soft-bodied, crawling robot.
The model accounts for key anatomical features such as a segmentally patterned, viscoelastic outer body wall (cuticle); a non-segmented inner cavity (haemocoel) filled with incompressible fluid that enables visceral pistoning; and claw-like protrusions (denticle bands) giving rise to asymmetric friction.
Under conditions of light damping and low forward kinetic friction, and with a single cuticle segment initially compressed, the passive dynamics of this model produce wave-like motion resembling that of real larvae. The presence of a volume-conserving hydrostatic skeleton allows a wave reaching the anterior of the body to initiate a new wave at the posterior, thus recycling energy. Forcing our model with a sinusoidal input reveals conditions under which power transfer from control to body may be maximised. A minimal control scheme using segmentally localised positive feedback is able to exploit these conditions in order to maintain wave-like motion indefinitely. These principles could form the basis of a design for a novel, soft-bodied, crawling robot.
Original language | English |
---|---|
Title of host publication | Biomimetic and Biohybrid Systems |
Subtitle of host publication | 4th International Conference, Living Machines 2015, Barcelona, Spain, July 28 - 31, 2015, Proceedings |
Publisher | Springer |
Pages | 1-12 |
Number of pages | 12 |
ISBN (Electronic) | 978-3-319-22979-9 |
ISBN (Print) | 978-3-319-22978-2 |
DOIs | |
Publication status | Published - 2015 |