A molecular recombination map of Antirrhinum majus

Zsuzsanna Schwarz-Sommer, Thomas Gübitz, Julia Weiss, Perla Gómez-di-Marco, Luciana Delgado-Benarroch, Andrew Hudson, Marcos Egea-Cortines

Research output: Contribution to journalArticlepeer-review


Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus.

We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size.

The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.
Original languageEnglish
Article number275
Number of pages10
JournalBMC Plant Biology
Issue numbern/a
Publication statusPublished - Dec 2010


Dive into the research topics of 'A molecular recombination map of Antirrhinum majus'. Together they form a unique fingerprint.

Cite this