A Molecular Switch Driving Inactivation in the Cardiac K+ Channel hERG

David A. Kopfer, Ulrike Hahn, Iris Ohmert, Gert Vriend, Olaf Pongs, Bert L. de Groot, Ulrich Zachariae

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

K+ channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K+ selectivity filter, has recently been recognized as a major K+ channel regulatory mechanism. In the K+ channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.
Original languageEnglish
Article numbere41023
JournalPLoS ONE
Volume7
Issue number7
DOIs
Publication statusPublished - 24 Jul 2012

Fingerprint

Dive into the research topics of 'A Molecular Switch Driving Inactivation in the Cardiac K+ Channel hERG'. Together they form a unique fingerprint.

Cite this