Projects per year
Abstract / Description of output
Linking our understanding of biological processes at different scales is a major conceptual challenge in biology, which is aggravated by differences in research methods. Modelling can be a useful approach to consolidating our understanding across traditional research domains. The laboratory model species Arabidopsis thaliana is very widely used to study plant growth processes and has also been tested more recently in eco-physiology and population genetics. However, approaches from crop modelling that might link these domains are rarely applied to Arabidopsis. Here, we combine plant growth models with phenology models from eco-physiology, using the agent-based modelling language Chromar. We introduce a simpler Framework Model of vegetative growth for Arabidopsis, FM-lite. By extending this model to include inflorescence and fruit growth and seed dormancy, we present a whole-life-cycle, multi-model FM-life, which allows us to simulate at the population level in various genotype x environment scenarios. Environmental effects on plant growth distinguish between the simulated life history strategies that were compatible with previously-described Arabidopsis phenology. Our results simulate reproductive success that is founded on the broad range of physiological processes familiar from crop models and suggest an approach to simulate evolution directly in future.
Original language | English |
---|---|
Pages (from-to) | 2463–2477 |
Number of pages | 16 |
Journal | Journal of Experimental Botany |
Volume | 70 |
Issue number | 9 |
Early online date | 19 Feb 2019 |
DOIs | |
Publication status | Published - 19 Feb 2019 |
Keywords / Materials (for Non-textual outputs)
- Systems biology
- Arabidopsis thaliana
- computational modelling
- agent-based modelling
- eco-physiology
- life history
- growth model
- population ecology
- Arabidopsis
- Ecophysiology
Fingerprint
Dive into the research topics of 'A multi-model Framework for the Arabidopsis life cycle'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Bridging systems biology and advanced computing, to realise multi-scale biological modelling
1/06/15 → 31/05/17
Project: Research
Research output
- 1 Review article
-
Practical steps to digital organism models, from laboratory model species to ‘Crops in silico’
Millar, A. J., Urquiza Garcia, J., Freeman, P., Hume, A., Plotkin, G. D., Sorokina, O., Zardilis, A. & Zielinski, T., 15 Apr 2019, In: Journal of Experimental Botany. 70, 9, p. 2403–2418 16 p., JEXBOT/2018/235879.Research output: Contribution to journal › Review article › peer-review
Open AccessFile
Datasets
Activities
- 1 Invited talk
-
ASA2018 talk: Forging a Causal Chain Around the Circadian Clock, from Genome Sequence to Field Traits
Andrew Millar (Invited speaker), Argyris Zardilis (Contributor), Jose Urquiza Garcia (Contributor), Alastair Hume (Contributor), Robert Muetzelfeldt (Contributor) & Gordon Plotkin (Contributor)
5 Nov 2018Activity: Academic talk or presentation types › Invited talk