A novel dominant mutation of the Na(v)1.4 alpha-subunit domain I leading to sodium channel myotonia

S. Petitprez, L. Tiab, L. Chen, L. Kappeler, K. M. Roesler, D. Schorderet, H. Abriel, J. -M. Burgunder

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Mutations in SCN4A may lead to myotonia.

Methods: Presentation of a large family with myotonia, including molecular studies and patch clamp experiments using human embryonic kidney 293 cells expressing wild-type and mutated channels.

Results: In a large family with historic data on seven generations and a clear phenotype, including myotonia at movement onset, with worsening by cold temperature, pregnancy, mental stress, and especially after rest after intense physical activity, but without weakness, the phenotype was linked with the muscle sodium channel gene ( SCN4A) locus, in which a novel p.I141V mutation was found. This modification is located within the first transmembrane segment of domain I of the Na(v)1.4 alpha subunit, a region where no mutation has been reported so far. Patch clamp experiments revealed a mutation-induced hyperpolarizing shift (-12.9 mV) of the voltage dependence of activation, leading to a significant increase ( approximately twofold) of the window current amplitude. In addition, the mutation shifted the voltage dependence of slow inactivation by -8.7 mV and accelerated the entry to this state.

Conclusions: We propose that the gain-of-function alteration in activation leads to the observed myotonic phenotype, whereas the enhanced slow inactivation may prevent depolarization-induced paralysis. Neurology (R) 2008;71:1669-1675

Original languageEnglish
Pages (from-to)1669-1675
Number of pages7
JournalNeurology
Volume71
Issue number21
DOIs
Publication statusPublished - 18 Nov 2008

Fingerprint

Dive into the research topics of 'A novel dominant mutation of the Na(v)1.4 alpha-subunit domain I leading to sodium channel myotonia'. Together they form a unique fingerprint.

Cite this