Projects per year
Abstract
A methodology is introduced here to exploit the programmability of the memristors in order to realize reconfigurable monolithic analogue circuit elements. Classical network synthesis methods are used to synthesize adjustable active inductors with inductance values exceeding those of on-chip passives by several orders of magnitude. In this paper, a wide range of active inductance values are obtained by employing memristor to control the biasing current of operational transconductance amplifiers used to implement gyrators. The gyration constant of the proposed gyrator will be linearly controlled by memristance state. The implementation of the designed circuit is realized in 0.18µm commercially available complementary metal-oxide-semiconductor (CMOS) technology from TSMC. Circuit performance is simulated using Cadence Virtuoso. The utilized off-chip memristor is a metal-oxide bi-layer memristor which exhibits a non-volatile memristance range of 4.7kΩ to 170kΩ. The active inductance range achieved is from approximately 95µH to 1.55mH with an inductive bandwidth of 69MHz and 18MHz respectively. The total power consumption is between 0.21mW to 1.95mW depending on the memristance and equivalent inductance.
Original language | English |
---|---|
Title of host publication | 2020 IEEE International Symposium on Circuits and Systems, ISCAS 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers |
ISBN (Electronic) | 9781728133201 |
DOIs | |
Publication status | Published - 28 Sept 2020 |
Event | 52nd IEEE International Symposium on Circuits and Systems, ISCAS 2020 - Virtual, Online Duration: 10 Oct 2020 → 21 Oct 2020 |
Publication series
Name | Proceedings - IEEE International Symposium on Circuits and Systems |
---|---|
Volume | 2020-October |
ISSN (Print) | 0271-4310 |
Conference
Conference | 52nd IEEE International Symposium on Circuits and Systems, ISCAS 2020 |
---|---|
City | Virtual, Online |
Period | 10/10/20 → 21/10/20 |
Keywords / Materials (for Non-textual outputs)
- CMOS
- Gyrator-C
- Memristor
Fingerprint
Dive into the research topics of 'A reconfigurable CMOS-memristor active inductor'. Together they form a unique fingerprint.Projects
- 1 Finished
-
FORTE: Functional Oxide Reconfigurable Technologies (FORTE): A Programme Grant
Prodromakis, T., Constandinou, T. G., Dudek, P., Koch, D. & Papavassiliou, C.
1/05/22 → 30/09/23
Project: Research