A search for resonances decaying into a Higgs boson and a new particle $X$ in the $XH \to qqbb$ final state with the ATLAS detector

Philip James Clark, Sinead Farrington, Michele Faucci Giannelli, Yanyan Gao, Ahmed Hasib, Christos Leonidopoulos, Victoria Jane Martin, Liza Mijović, Corrinne Mills, Benjamin Wynne, Atlas Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

A search for heavy resonances decaying into a Higgs boson ($H$) and a new particle ($X$) is reported, utilizing 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} =$ 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle $X$ is assumed to decay to a pair of light quarks, and the fully hadronic final state $XH \rightarrow q\bar q'b\bar b$ is analysed. The search considers the regime of high $XH$ resonance masses, where the $X$ and $H$ bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of $XH$ mass versus $X$ mass is scanned for evidence of a signal, over a range of $XH$ resonance mass values between 1 TeV and 4 TeV, and for $X$ particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of $XH$ and $X$ masses, on the production cross-section of the $XH\rightarrow q\bar q'b\bar b$ resonance.
Original languageEnglish
Pages (from-to)24-45
JournalPhysics Letters B
VolumeB779
DOIs
Publication statusPublished - 10 Apr 2018

Fingerprint

Dive into the research topics of 'A search for resonances decaying into a Higgs boson and a new particle $X$ in the $XH \to qqbb$ final state with the ATLAS detector'. Together they form a unique fingerprint.

Cite this