TY - JOUR
T1 - A simple and selective method for the separation of Cu radioisotopes from nickel
AU - Fan, Xianfeng
AU - Parker, David J.
AU - Smith, Mike D.
AU - Ingram, Andy
AU - Yang, Zhufang
AU - Seville, Jonathan P.K.
PY - 2006/10/1
Y1 - 2006/10/1
N2 - Separation of copper radioisotopes from a nickel target is normally performed using solvent extraction or anion exchange rather than using cationic exchange. A commonly held opinion is that cationic exchangers have very similar thermodynamic complexation constants for metallic ions with identical charges, therefore making the separation very difficult or impossible. The results presented in this article indicate that the selectivity of Chelex-100 (a cationic ion exchanger) for Cu radioisotope and Ni ions not only depends on the thermodynamic complexation constant in the resin but also markedly varies with the concentration of mobile H+. In our developed method, separation of copper radioisotopes from a nickel target was fulfilled in a column filled with Chelex-100 via controlling the HNO3 concentration of the eluent, and the separation is much more effective, simple and economical in comparison with the common method of anion exchange. For an irradiated nickel target with 650 mg Ni, after separation, the loss of Cu radioisotopes in the nickel portion was reduced from 30% to 0.33% of the total initial radioactivity and the nickel mixed into the radioactive products was reduced from 9.5 to 0.5 mg. This significant improvement will make subsequent labeling much easier and reduce consumption of chelating agents and other chemicals during labeling. If the labeled agent is used in human medical applications, the developed method will significantly decrease the uptake of Ni and chelating agents by patients, therefore reducing both the stress on human body associated with clearing the chemicals from blood and tissue and the risk of various types of acute and chronic disorder due to exposure to Ni.
AB - Separation of copper radioisotopes from a nickel target is normally performed using solvent extraction or anion exchange rather than using cationic exchange. A commonly held opinion is that cationic exchangers have very similar thermodynamic complexation constants for metallic ions with identical charges, therefore making the separation very difficult or impossible. The results presented in this article indicate that the selectivity of Chelex-100 (a cationic ion exchanger) for Cu radioisotope and Ni ions not only depends on the thermodynamic complexation constant in the resin but also markedly varies with the concentration of mobile H+. In our developed method, separation of copper radioisotopes from a nickel target was fulfilled in a column filled with Chelex-100 via controlling the HNO3 concentration of the eluent, and the separation is much more effective, simple and economical in comparison with the common method of anion exchange. For an irradiated nickel target with 650 mg Ni, after separation, the loss of Cu radioisotopes in the nickel portion was reduced from 30% to 0.33% of the total initial radioactivity and the nickel mixed into the radioactive products was reduced from 9.5 to 0.5 mg. This significant improvement will make subsequent labeling much easier and reduce consumption of chelating agents and other chemicals during labeling. If the labeled agent is used in human medical applications, the developed method will significantly decrease the uptake of Ni and chelating agents by patients, therefore reducing both the stress on human body associated with clearing the chemicals from blood and tissue and the risk of various types of acute and chronic disorder due to exposure to Ni.
KW - Chelex-100
KW - Copper radioisotopes
KW - Ion exchange
KW - Nickel
KW - Purification
UR - http://www.scopus.com/inward/record.url?scp=33749434637&partnerID=8YFLogxK
U2 - 10.1016/j.nucmedbio.2005.08.001
DO - 10.1016/j.nucmedbio.2005.08.001
M3 - Article
C2 - 17045175
AN - SCOPUS:33749434637
SN - 0969-8051
VL - 33
SP - 939
EP - 944
JO - Nuclear Medicine and Biology
JF - Nuclear Medicine and Biology
IS - 7
ER -