A simple method for calculating in-situ settling velocities of cohesive sediment without fractal dimensions

Jin Xiao Zhao, Guo Lu Yang, Monika Kreitmair, Yao Yue

Research output: Contribution to journalArticlepeer-review


The settling velocity of sediment flocs is central to the study of the transportation process of contaminants in aqueous ecosystems. To describe the irregular shape of flocs, fractal theory based on the image analysis method is commonly used. However, this method usually leads to non-unique results as it requires the selection of a threshold intensity. Therefore, the main objective of this study is to develop a method to determine the settling velocity of both flocs and particles without using the fractal dimension. To achieve this goal, porosity was introduced as a substitute for the fractal dimension, and a simple method with three variables, floc diameter, mass concentration, and volume concentration of flocs, was developed. A density function method was used to obtain the floc porosity from a laser particle sizer which could obtain the volume concentration of sediment and an optical backscatter point sensor (OBS). Laboratory tests on two sediments from two different lakes were conducted. Results indicate that this method has a higher accuracy than traditional methods such as the Stokes equation and the Rubey equation. The variable density function performed better than the uniform density function and was, therefore, recommended for calculating the settling velocities for both micro and macro flocs. Using the developed method, the drag coefficient for the flocs was calculated and its accuracy analyzed. The method presented in this paper, which is simpler in determining in-situ settling velocities than traditional methods, also allows for direct inter-comparison between results derived from various studies.

Original languageEnglish
Pages (from-to)544-556
Number of pages13
JournalJournal of Zhejiang University Science A
Issue number7
Publication statusPublished - 1 Jul 2018


  • Density function
  • Dredge
  • In-situ measurement
  • Porosity
  • Sediment settling
  • TV81

Fingerprint Dive into the research topics of 'A simple method for calculating in-situ settling velocities of cohesive sediment without fractal dimensions'. Together they form a unique fingerprint.

Cite this