A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination

Desi Staneva, Roberta Carloni, Tatsiana Auchynnikava, Pin Tong, Juri Rappsilber, Arockia A. Jeyaprakash, Keith R Matthews, Robin C. Allshire

Research output: Contribution to journalArticlepeer-review

Abstract

Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by ‘writer’ and ‘eraser’ enzymes, respectively. Nucleosomal PTMs are recognised by a variety of ‘reader’ proteins which alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 65 predicted readers, writers and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 60 of them in the parasite’s bloodstream form. ChIP-seq demonstrated that fifteen candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins exhibit a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identified distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcription start regions. The systematic approach employed provides detail of the composition and organization of the chromatin regulatory machinery in Trypanosoma brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.
Original languageEnglish
Pages (from-to)2138-2154
Number of pages17
JournalGenome Research
Volume31
Issue number11
Early online date18 Aug 2021
DOIs
Publication statusPublished - 1 Nov 2021

Fingerprint

Dive into the research topics of 'A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination'. Together they form a unique fingerprint.

Cite this