A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology

Louise Dickson, Ichiro Aramori, James McCulloch, John Sharkey, Keith Finlayson

Research output: Contribution to journalArticlepeer-review

Abstract

VPAC/PAC receptor activation classically results in cyclic-AMP production, with limited reports evaluating calcium signalling. These studies systematically characterise intracellular cyclic-AMP ([cAMP](i)) and calcium ([Ca(2+)](i)) responses in CHO-cells expressing recombinant human (h) VPAC/PAC receptors (hVPAC(1)R, hVPAC(2)R, hPAC(1)R), using two simple, non-radioactive, HT-amenable assays. The rank order of potency (ROP) of the agonists VIP, PACAP-27 and PACAP-38 was similar in both assays for each individual receptor subtype, although potencies (EC(50)) in the [Ca(2+)](i) assay were approximately 100-fold lower. Importantly, this shift was also evident in SHSY-5Y cells endogenously expressing hPAC(1)R. Furthermore, [Ala(11,22,28)]VIP and maxadilan were selective hVPAC(1)R and hPAC(1)R agonists, respectively, and although R3P65 had no demonstrable hVPAC(2)R selectivity, these compounds exhibited comparable reductions in [Ca(2+)](i) EC(50) values. In contrast, PG97-269 and PG99-465, putatively selective hVPAC(1)R and hVPAC(2)R antagonists, respectively, were marginally less potent in [cAMP](i) studies, whereas M65 was equipotent at hPAC(1)R. Moreover, PG99-465 alone increased [cAMP](i) at all three hVPAC/PAC receptor subtypes, with full hVPAC(1)R and hPAC(1)R agonism. With equivalent agonist ROPs generated in both assays, [Ca(2+)](i) signalling provides an alternative approach to examine hVPAC/PAC receptor pharmacology. However, these studies underscore the paucity of receptor selective compounds, complexities in comparing drug potencies across assays, and the pleiotropic nature of VPAC/PAC-receptor signalling.
Original languageEnglish
Pages (from-to)1086-98
Number of pages13
JournalNeuropharmacology
Volume51
Issue number6
DOIs
Publication statusPublished - 2006

Fingerprint Dive into the research topics of 'A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology'. Together they form a unique fingerprint.

Cite this