Abstract / Description of output
This paper analyses and evaluates parallel implementations of an optimization algorithm for perishable inventory control problems. This iterative algorithm has high computational requirements when solving large problems. Therefore, the use of parallel and distributed computing reduces the execution time and improves the quality of the solutions. This work investigates two implementations on heterogeneous platforms: (1) a MPI-PTHREADS version; and (2) a multi-GPU version. A comparison of these implementations has been carried out. Experimental results show the benefits of using parallel and distributed codes to solve this kind of problems.
Furthermore, the distribution of the workload among the available processing elements is a challenging problem. This distribution of tasks can be modelled as a Bin-Packing problem. This implies that the selection of the set of tasks assigned to every processing element requires the design of a heuristic capable of efficiently balancing the workload statically with no significant overhead. This heuristic has been used for the parallel implementations of the optimization for perishable inventory control problem.
Furthermore, the distribution of the workload among the available processing elements is a challenging problem. This distribution of tasks can be modelled as a Bin-Packing problem. This implies that the selection of the set of tasks assigned to every processing element requires the design of a heuristic capable of efficiently balancing the workload statically with no significant overhead. This heuristic has been used for the parallel implementations of the optimization for perishable inventory control problem.
Original language | English |
---|---|
Pages (from-to) | 12-18 |
Journal | Journal of Parallel and Distributed Computing |
Volume | 104 |
Early online date | 28 Dec 2016 |
DOIs | |
Publication status | Published - Jun 2017 |
Keywords / Materials (for Non-textual outputs)
- perishable inventory control
- GPU computing
- heterogeneous computing
- optimization
- Monte-Carlo simulation
- Bin-Packing problem