Projects per year
Abstract / Description of output
Bayesian and non-Bayesian moment-based inference methods are commonly used to estimate the parameters defining stochastic models of gene regulatory networks from noisy single cell or population snapshot data. However a systematic investigation of the accuracy of the predictions of these methods remains missing. Here we present the results of such a study using synthetic noisy data of a negative auto-regulatory transcriptional feedback loop, one of the most common building blocks of complex gene regulatory networks. We study the error in parameter estimation as a function of (i) number of cells in each sample; (ii) the number of time points; (iii) the highest-order moment of protein fluctuations used for inference; (iv) the moment-closure method used for likelihood approximation. We nd that for sample sizes typical of ow cytometry experiments, parameter estimation by maximizing the likelihood is as accurate as using Bayesian methods but with a much reduced computational time. We also show that the choice of moment-closure method is the crucial factor determining the maximum achievable accuracy of moment-based inference methods. Common likelihood approximation methods based on the linear noise approximation or the zero cumulants closure perform poorly for feedback loops with large protein-DNA binding rates or large protein bursts; this is exacerbated for highly heterogenous cell populations. In contrast, approximating the likelihood using the linear-mapping approximation or conditional derivative matching leads to highly accurate parameter estimates for a wide range of conditions.
Original language | English |
---|---|
Number of pages | 18 |
Journal | Journal of the Royal Society. Interface |
Volume | 16 |
Issue number | 153 |
DOIs | |
Publication status | Published - 3 Apr 2019 |
Keywords / Materials (for Non-textual outputs)
- chemical master equation
- gene regulatory networks
- inference
Fingerprint
Dive into the research topics of 'Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Bilateral NSF/BIO-BBSRC: Modelling Light Control of Development
Halliday, K., Grima, R., Furniss, J., Seaton, D. & Urquiza garcía, J.
1/09/15 → 31/03/19
Project: Research
-
SynthSys-Mammalian: Edinburgh Mammalian Synthetic Biology Research Centre
14/11/14 → 31/03/22
Project: Research
Datasets
-
Data from Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data
Cao, Z. (Creator), GitHub, 21 Dec 2018
https://github.com/edwardcao3026/MAP-MLE
Dataset