Adrenocortical-specific transgene expression directed by steroid hydroxylase gene promoters

Steven D Morley, I Viard, K L Parker, J J Mullins

Research output: Contribution to journalArticlepeer-review

Abstract

The 5'-flanking regions of genes for three mouse adrenal steroid hydroxylases were analyzed for their ability to direct adrenal cortex-specific beta-galactosidase (beta-gal) reporter expression both in cell culture and transgenic mice. The 5'-flanking regions chosen were from the genes for steroid 21-hydroxylase (21-OHase), expressed throughout the adrenal cortex and mediating both glucocorticoid and mineralocorticoid synthesis, and aldosterone synthetase (AS) and steroid 11 beta-hydroxylase (11 beta-OHase), which catalyze respectively the terminal steps of mineralocorticoid synthesis in the zona glomerulosa and glucocorticoid synthesis in the zona fasciculata/reticularis. While 5.0 kb of 11 beta-OHase gene 5'-flanking region and 5.4 kb of the AS gene 5'-flanking region mediated respectively moderate and low levels of beta-gal reporter expression in YI adrenocortical tumor cells, neither of these 5'-flanking regions was able to direct reporter expression to the appropriate adrenocortical zone of transgenic mice. This suggests that additional regulatory elements, lying outside these 5'-flanking regions, are required for 11 beta-OHase and AS gene expression in the intact mouse. In contrast, 6.4 kb of the mouse 21-OHase A gene 5' flanking region was able to direct specific beta-galactosidase reporter expression, in both Y1 cells and transgenic mice, indicating that elements directing adrenal cortex-specific gene expression in vivo are located not more than 6.4 kb 5' of the 21-OHase gene transcription start site.

Original languageEnglish
Pages (from-to)631-639
Number of pages9
JournalEndocrine research
Volume22
Issue number4
Publication statusPublished - 1996

Fingerprint

Dive into the research topics of 'Adrenocortical-specific transgene expression directed by steroid hydroxylase gene promoters'. Together they form a unique fingerprint.

Cite this