Algorithm selection in bilateral negotiation

Litan Ilany, Yakov Gal

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Despite the abundance of strategies in the multi-agent systems literature on repeated negotiation under incomplete information, there is no single negotiation strategy that is optimal for all possible domains. Thus, agent designers face an “algorithm selection” problem—which negotiation strategy to choose when facing a new domain and unknown opponent. Our approach to this problem is to design a “meta-agent” that predicts the performance of different negotiation strategies at run-time. We study two types of the algorithm selection problem in negotiation: In the off-line variant, an agent needs to select a negotiation strategy for a given domain but cannot switch to a different strategy once the negotiation has begun. For this case, we use supervised learning to select a negotiation strategy for a new domain that is based on predicting its performance using structural features of the domain. In the on-line variant, an agent is allowed to adapt its negotiation strategy over time. For this case, we used multi-armed bandit techniques that balance the exploration–exploitation tradeoff of different negotiation strategies. Our approach was evaluated using the GENIUS negotiation test-bed that is used for the annual international Automated Negotiation Agent Competition which represents the chief venue for evaluating the state-of-the-art multi-agent negotiation strategies. We ran extensive simulations using the test bed with all of the top-contenders from both off-line and on-line negotiation tracks of the competition. The results show that the meta-agent was able to outperform all of the finalists that were submitted to the most recent competition, and to choose the best possible agent (in retrospect) for more settings than any of the other finalists. This result was consistent for both off-line and on-line variants of the algorithm selection problem. This work has important insights for multi-agent systems designers, demonstrating that “a little learning goes a long way”, despite the inherent uncertainty associated with negotiation under incomplete information.
Original languageEnglish
Pages (from-to)697-723
Number of pages27
JournalAutonomous Agents and Multi-Agent Systems
Issue number4
Early online date4 Jul 2015
Publication statusPublished - 1 Jul 2016


Dive into the research topics of 'Algorithm selection in bilateral negotiation'. Together they form a unique fingerprint.

Cite this