Abstract / Description of output
Saltatory conduction in myelinated axons requires organization of the nodes of Ranvier, where voltage-gated sodium channels are prominently localized [1]. Previous results indicate that alphaII-spectrin, a component of the cortical cytoskeleton [2], is enriched at the paranodes [3, 4], which flank the node of Ranvier, but alphaII-spectrin's function has not been investigated. Starting with a genetic screen in zebrafish, we discovered in alphaII-spectrin (alphaII-spn) a mutation that disrupts nodal sodium-channel clusters in myelinated axons of the PNS and CNS. In alphaII-spn mutants, the nodal sodium-channel clusters are reduced in number and disrupted at early stages. Analysis of chimeric animals indicated that alphaII-spn functions autonomously in neurons. Ultrastructural studies show that myelin forms in the posterior lateral line nerve and in the ventral spinal cord in alphaII-spn mutants and that the node is abnormally long; these findings indicate that alphaII-spn is required for the assembly of a mature node of the correct length. We find that alphaII-spectrin is enriched in nodes and paranodes at early stages and that the nodal expression diminishes as nodes mature. Our results provide functional evidence that alphaII-spectrin in the axonal cytoskeleton is essential for stabilizing nascent sodium-channel clusters and assembling the mature node of Ranvier.
Original language | English |
---|---|
Pages (from-to) | 562-8 |
Number of pages | 7 |
Journal | Current biology : CB |
Volume | 17 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2007 |