Abstract / Description of output
This paper presents a robust ABAQUS® plug-in called Virtual Data Generator (VDGen) for generating virtual data for identifying the uncertain material properties in unidirectional lamina through artificial neural networks (ANNs). The plug-in supports the 3D finite element models of unit cells with square and hexagonal fibre arrays, uses Latin-Hypercube sampling methods and robustly imposes periodic boundary conditions. Using the data generated from the plug-in, ANN is demonstrated to explicitly and accurately parameterise the relationship between fibre mechanical properties and fibre/matrix interphase parameters at microscale and the mechanical properties of a UD lamina at macroscale. The plug-in tool is applicable to general unidirectional lamina and enables easy establishment of high-fidelity micromechanical finite element models with identified material properties.
Original language | English |
---|---|
Pages (from-to) | pages 4323–4335 |
Journal | Engineering with Computers |
Volume | 38 |
Early online date | 31 Oct 2021 |
DOIs | |
Publication status | Published - Oct 2022 |