Abstract
We present the first photometric redshift distribution for a large sample of 870 mu m submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z(phot) = 2.3 +/- 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z similar to 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to zphot = 2.5 +/- 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z >= 3 is at most 35% +/- 5% of the total population. We derive a median stellar mass of M star = (8 +/- 1) x 10(10) M circle dot, although there are systematic uncertainties of up to 5 x for individual sources. Assuming that the star formation activity in SMGs has a timescale of similar to 100 Myr, we show that their descendants at z similar to 0 would have a space density and MH distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.
Original language | English |
---|---|
Article number | 125 |
Number of pages | 43 |
Journal | Astrophysical Journal |
Volume | 788 |
Issue number | 2 |
DOIs | |
Publication status | Published - 20 Jun 2014 |
Keywords
- galaxies: evolution
- galaxies: high-redshift
- galaxies: starburst
- STAR-FORMING GALAXIES
- DEGREE EXTRAGALACTIC SURVEY
- X-RAY SOURCES
- SIMILAR-TO 2
- OLD STELLAR POPULATIONS
- FAR-INFRARED PROPERTIES
- YALE-CHILE MUSYC
- 1.4 GHZ SURVEY
- BLACK-HOLES
- PHOTOMETRIC REDSHIFT