Abstract / Description of output
In this paper we consider a minimization problem for the functional $$ J(u)=\int_{B_1^+}|\nabla u|\sp 2+\lambda_{+}^2\chi_{\{u>0\}}+\lambda_{-}^2\chi_{\{u\leq0\}}, $$ in the upper half ball $B_1^+\subset\R^n, n\geq 2$ subject to a Lipschitz continuous Dirichlet data on $\partial B_1^+$. More precisely we assume that $0\in \partial \{u>0\}$ and the derivative of the boundary data has a jump discontinuity. If $0\in \bar{\partial(\{u>0\} \cap B_1^+)}$ then (for $n=2$ or $n>3$ and one-phase case) we prove, among other things, that the free boundary $\partial \{u>0\}$ approaches the origin along one of the two possible planes given by $$ \gamma x_1 = \pm x_2, $$ where $\gamma$ is an explicit constant given by the boundary data and $\lambda_\pm$ the constants seen in the definition of $J(u)$. Moreover the speed of the approach to $\gamma x_1=x_2$ is uniform.
Original language | English |
---|---|
Pages (from-to) | 5141-5175 |
Number of pages | 35 |
Journal | Transactions of the American Mathematical Society |
Volume | 367 |
Early online date | 4 Mar 2015 |
DOIs | |
Publication status | Published - Jul 2015 |
Keywords / Materials (for Non-textual outputs)
- math.AP
- 35R35