Analysis of time-correlated single photon counting data: a comparative evaluation of deterministic and probabilistic approaches

Darren A. Smith*, Grant McKenzie, Anita C. Jones, Trevor A. Smith

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

We review various methods for analysing time-resolved fluorescence data acquired using the time-correlated single photon counting method in an attempt to evaluate their benefits and limitations. We have applied these methods to both experimental and simulated data. The relative merits of using deterministic approaches, such as the commonly used iterative reconvolution method, and probabilistic approaches, such as the smoothed exponential series method, the maximum entropy method and recently proposed basis pursuit denoising (compressed sensing) method, are outlined. In particular, we show the value of using multiple methods to arrive at the most appropriate choice of model. We show that the use of probabilistic analysis methods can indicate whether a discrete component or distribution analysis provides the better representation of the data.

Original languageEnglish
Article number042001
Number of pages18
JournalMethods and Applications in Fluorescence
Volume5
Issue number4
Early online date31 Jul 2017
DOIs
Publication statusE-pub ahead of print - 31 Jul 2017

Keywords

  • TCSPC
  • deterministic and probabilistic analysis
  • exponential series method
  • maximum entropy method
  • basis pursuit denoising
  • iterative reconvolution
  • 2-aminopurine
  • MAXIMUM-ENTROPY METHOD
  • FLUORESCENCE DECAY CURVES
  • RESOLVED FLUORESCENCE
  • LIFETIME DISTRIBUTION
  • UNDERLYING DISTRIBUTIONS
  • ELASTIC NET
  • REGULARIZATION
  • DECONVOLUTION
  • PARAMETERS
  • RECOVERY

Fingerprint

Dive into the research topics of 'Analysis of time-correlated single photon counting data: a comparative evaluation of deterministic and probabilistic approaches'. Together they form a unique fingerprint.

Cite this