Ape parasite origins of human malaria virulence genes

Daniel B. Larremore, Sesh A. Sundararaman, Weimin Liu, William R. Proto, Aaron Clauset, Dorothy E. Loy, Sheri Speede, Lindsey J. Plenderleith, Paul M. Sharp, Beatrice H. Hahn, Julian C. Rayner, Caroline O. Buckee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum.

Original languageEnglish
Article number8368
JournalNature Communications
Publication statusPublished - 12 Oct 2015


Dive into the research topics of 'Ape parasite origins of human malaria virulence genes'. Together they form a unique fingerprint.

Cite this