Applying Adversarial Planning Techniques to Go

S. Wilmott, J. Richardson, Alan Bundy, J. Levine

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Approaches to computer game playing based on α–β search of the tree of possible move sequences combined with a position evaluation function have been successful for many games, notably Chess. Such approaches are less successful for games with large search spaces and complex positions, such as Go, and we are led to seek alternatives. One such alternative is to model the goals of the players, and their strategies for achieving these goals. This approach means searching the space of possible goal expansions, typically much smaller than the space of move sequences. Previous attempts to apply these techniques to Go have been unable to provide results for anything other than a high strategic level or very open game positions. In this paper we describe how adversarial hierarchical task network planning can provide a framework for goal-directed game playing in Go which is also applicable both strategic and tactical problems.
Original languageEnglish
JournalTheoretical Computer Science
Volume252
Issue number1-2
DOIs
Publication statusPublished - Feb 2001

Keywords / Materials (for Non-textual outputs)

  • Computer games
  • Go
  • Planning
  • Adversarial planning

Fingerprint

Dive into the research topics of 'Applying Adversarial Planning Techniques to Go'. Together they form a unique fingerprint.

Cite this