Artifact-Reduced Two-Dimensional Cine Steady State Free Precession for Myocardial Blood-Oxygen-Level-Dependent Imaging

Xiangzhi Zhou, Sotirios A. Tsaftaris, Ying Liu, Richard Tang, Rachel Klein, Sven Zuehlsdorff, Debiao Li, Rohan Dharmakumar*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Purpose: To minimize image artifacts in long TR cardiac phase-resolved steady state free precession (SSFP) based blood-oxygen-level-dependent (BOLD) imaging.

Materials and Methods: Nine healthy dogs (four male, five female. 20-25 kg) were studied in a clinical 1.5 Tesla MRI scanner to investigate the effect of temporal resolution, readout bandwidth, and motion compensation on long repetition time (TR) SSFP images. Breath-held 2D SSFP cine sequences with various temporal resolutions (10-204 ms), bandwidths (239-930 Hz/pixel). with and without first-order motion compensation were prescribed in the basal, mid-ventricular, and apical along the short axis. Preliminary myocardial BOLD studies in dogs with controllable coronary stenosis were performed to assess the benefits of artifact-reduction strategies.

Results: Shortening the readout time by means of increasing readout bandwidth had no observable reduction in image artifacts. However, increasing the temporal resolution in the presence of first-order motion compensation led to significant reduction in image artifacts. Preliminary studies demonstrated that BOLD signal changes can be reliably detected throughout the cardiac cycle.

Conclusion: Artifact-reduction methods used in this study provide significant improvement in image quality compared with conventional long TR SSFP BOLD MRI. It is envisioned that the methods proposed here may enable reliable detection of myocardial oxygenation changes throughout the cardiac cycle with long TR SSFP-based myocardial BOLD MRI.

Original languageEnglish
Pages (from-to)863-871
Number of pages9
JournalJournal of Magnetic Resonance Imaging
Issue number4
Publication statusPublished - Apr 2010


  • artifacts
  • SSFP
  • BOLD
  • oxygen
  • flow compensation
  • coronary artery disease
  • MRI


Dive into the research topics of 'Artifact-Reduced Two-Dimensional Cine Steady State Free Precession for Myocardial Blood-Oxygen-Level-Dependent Imaging'. Together they form a unique fingerprint.

Cite this