Ash from the Eyjafjallajokull eruption (Iceland): Fragmentation processes and aerodynamic behavior

P. Dellino, M. T. Gudmundsson, G. Larsen, D. Mele, J. A. Stevenson, T. Thordarson, B. Zimanowski

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

The fragmentation process and aerodynamic behavior of ash from the Eyjafjallajokull eruption of 2010 are investigated by combining grain-size, Scanning Electron Microscopy (SEM), and quantitative particle morphology. Ash samples were collected on land in Iceland at 3-55 km distance from the volcanic vent, and represent various phases of the pulsating eruption. The grain size is fine even for deposits close to the vent, suggesting that the parent particle population at fragmentation consisted of a substantial amount of fine ash. SEM investigation reveals that ash produced during the first phase of the eruption consists of juvenile glass particles showing key features of magma-water interaction, suggesting that phreatomagmatism played a major role in the fragmentation of a vesicle-poor magma. In the last phase of the eruption, fragmentation was purely magmatic and resulted from stress-induced reaction of a microvesicular, fragile melt. The shape of ash, as determined by quantitative morphology analysis, is highly irregular, rendering the settling velocity quite low. This makes transportation by wind much easier than for other more regularly shaped particles of sedimentary origin. We conclude that the combination of magma's fine brittle fragmentation and irregular particle shape was the main factor in the extensive atmospheric circulation of ash from the mildly energetic Eyjafjallajokull eruption.

Original languageEnglish
Article numberB00C04
Pages (from-to)1-10
Number of pages10
JournalJournal of Geophysical Research
Volume117
Issue numberB9
DOIs
Publication statusPublished - 1 Sept 2012

Keywords / Materials (for Non-textual outputs)

  • NONSPHERICAL PARTICLES
  • EXPLOSIVE ERUPTIONS
  • MAGMA FRAGMENTATION
  • VOLCANIC-ERUPTIONS
  • SOMMA-VESUVIUS
  • GRAIN-SIZE
  • FINE ASH
  • TEPHRA
  • SEDIMENTATION
  • PYROCLASTS

Fingerprint

Dive into the research topics of 'Ash from the Eyjafjallajokull eruption (Iceland): Fragmentation processes and aerodynamic behavior'. Together they form a unique fingerprint.

Cite this